<span>Traveled Downstream a distance of 33 Mi and then came right back. If the speed of the current was 12 mph and the total trip took 3 hours and 40 minutes.
Let S = boat speed in still water then (s + 12) = downstream speed (s -12) = upstream speed
Given Time = 3 hours 40 minutes = 220 minutes = (220/60) h = (11/3) h Time = Distance/Speed
33/(s +12) + 33/(s-12) = 11/3 3{33(s-12) + 33(s +12)} = 11(s+12) (s -12) 99(s -12 + s + 12) = 11(</span> s^{2} + 12 s -12 s -144) 99(2 s) = 11(s^{2} -144) 198 s/11 = (s^{2} -144) 18 s = (s^{2} -144) (s^{2} - 18 s - 144) = 0 s^{2} - 24 s + 6 s -144 =0 s(s- 24) + 6(s -24) =0 (s -24) (s + 6) = 0 s -24 = 0, s + 6 =0 s = 24, s = -6 Answer) s = 24 mph is the average speed of the boat relative to the water.
Identity property of multiplication
Answer and Step-by-step explanation:
Considering the table attached.
(a) over 9.5 kg;
μ = 8
σ = 0.9
z = 9.5 - 8/0.9 ≈ 1.67
P (Z > 1.67) = 0.5 - P(0<Z<1.67) = 0.5 - 0.4525 = 0.0475
(b) at most 8.6 kg;
z = 8.6-8/0.9 ≈ 0.67
P(Z < 0.67) = 0.5 + P(0<Z<0.67) = 0.5 + 0.2486 = 0.7486
(c) between 7.3 and 9.1 kg.
z₁ = 7.3-8/0.9 ≈ -0.78
z₂ = 9.1 - 8/0.9 ≈ 1.22
P(-0.78 < Z < 1.22) = P(0 < Z < 0.78) + P(0 < Z < 1.22) = 0.2823 + 0.3888 = 0.6711
10, 20, 30, 40, 50, 60, 70, 80, 90, 100
-30% answer is right because it lost 3 inches and 30 percent of 10 is 3.
Answer: -30%