In the given examples, Cl2 and CCl4 are non-polar and held by covalent bonds. HI and H2O are polar molecules and held by ionic bonds.
Since covalent bonds are weaker than ionic bonds, Cl2 or CCl4 must have the lowest melting points. Among the two, Cl2 has a lower molecular mass than CCl4, hence Cl2 must have the lowest melting point.
Ans A) Cl2
Answer:
A. Yes, Amanda find the number of moles of NaCl correctly.
B. 0.73 M.
Explanation:
<em>A. Did Amanda find the number of moles of NaCl correctly? If not, explain.
</em>
-
Yes, Amanda find the number of moles of NaCl correctly.
- The relation to find the no. of moles of NaCl is:
<em>No. of moles (n) of NaCl = mass/molar mass.</em>
mass of NaCl = 32.0 g, molar mass of NaCl = 58.45 g/mol.
∴ No. of moles (n) of NaCl = mass/molar mass = (32.0 g)/(58.45 g/mol) = (32.0 g NaCl)*(1 mol of NaCl)/(58.45 g NaCl) = 0.547 mol ≅ 0.55 mol.
<em>B. What does Amanda need to do next to calculate the molarity of the NaCl solution? Show your work for full credit.</em>
<em></em>
- Molarity is the no. of moles of solute dissolved in a 1.0 liter of a solution.
∴ M = (no. of moles of NaCl)/(volume of solution (L)) = (0.55 mol)/(0.75 L) = 0.73 M.
Answer:

Explanation:
pH is derived from the concentration of hydronium ions in a solution. Hydrocyanic acid is HCN.
First, we shall figure out the moles of HCN:

If HCN was a strong acid:
HCN has a 1:1 ratio of H+ ions, the moles of H+ is also the same.
To find the molarity, we now divide by Liters. This gets us:

Finally, we plug it into the definition of pH:
![pH = -log[H^{+} ]](https://tex.z-dn.net/?f=pH%20%3D%20-log%5BH%5E%7B%2B%7D%20%5D)


However, since HCN is a weak acid, it only partially dissociates. The
of HCN is
.
![K_a = \frac{[H^+][A^-]}{[HA]}](https://tex.z-dn.net/?f=K_a%20%3D%20%5Cfrac%7B%5BH%5E%2B%5D%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
We can use an ice table to determine that when x = H+,

![[H^+] = 8.83*10^{-6}](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%20%3D%208.83%2A10%5E%7B-6%7D)
![pH = -log[H^{+} ]](https://tex.z-dn.net/?f=pH%20%3D%20-log%5BH%5E%7B%2B%7D%20%5D)


Answer:
The answer may be A because that's what I believe
The equation that shows the formation of chromium (ii) ion from neutral chromium atom is as follow
Cr ---> cr^2+ + 2e-
Cr^2+ is the chromium ion with oxidation state of two which is one of the common ion of chromium. Other common ion of chromium include chromium of oxidation state 6 and 3