Answer:
B
Explanation:
it uses the process of the light reaction stage and Calvin cycle to trap sunlight in the day and make food at night
Answer:
54 g
Explanation:
Given data:
Mass of carbon = 18 g
Mass of CO₂ = 72 g
Mass of oxygen needed = ?
Solution:
Chemical reaction:
C + O₂ → CO₂
according to law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
This law was given by French chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
In given photosynthesis reaction:
6CO₂ + 6H₂O + energy → C₆H₁₂O₆ + 6O₂
there are six carbon atoms, eighteen oxygen atoms and twelve hydrogen atoms on the both side of equation so this reaction followed the law of conservation of mass.
In a similar way,
C + O₂ → CO₂
18 g + X = 72
X = 72 -18
X = 54 g
Thus, 54 g of O₂ are required.
Answer:
Explanation:
<u>1. Word equation:</u>
- <em>mercury(II) oxide → mercury + oxygen </em>
<u>2. Balanced molecular equation:</u>
<u>3. Mole ratio</u>
Write the ratio of the coefficients of the substances that are object of the problem:

<u>4. Calculate the number of moles of O₂(g)</u>
Use the equation for ideal gases:

<u>5. Calculate the number of moles of HgO</u>

<u>6. Convert to mass</u>
- mass = # moles × molar mass
- molar mass of HgO: 216.591g/mol
- mass = 0.315mol × 216.591g/mol = 68.3g
Answer:
Q = mcT ...you can either substitute the molar heat capacity of water in the place of c or the specific heat capacity of water.
Explanation: