Answer:
59.077 kJ/mol.
Explanation:
- From Arrhenius law: <em>K = Ae(-Ea/RT)</em>
where, K is the rate constant of the reaction.
A is the Arrhenius factor.
Ea is the activation energy.
R is the general gas constant.
T is the temperature.
- At different temperatures:
<em>ln(k₂/k₁) = Ea/R [(T₂-T₁)/(T₁T₂)]</em>
k₂ = 3k₁ , Ea = ??? J/mol, R = 8.314 J/mol.K, T₁ = 294.0 K, T₂ = 308.0 K.
ln(3k₁/k₁) = (Ea / 8.314 J/mol.K) [(308.0 K - 294.0 K) / (294.0 K x 308.0 K)]
∴ ln(3) = 1.859 x 10⁻⁵ Ea
∴ Ea = ln(3) / (1.859 x 10⁻⁵) = 59.077 kJ/mol.
Answer: water is a compound.
Ionic bond
Explanation:
Ca - Cl₂ is an ionic bond because it involves a true metal and a non-metal.
An ionic bond is an inter-atomic bond between two chemical species.
- This bond forms between two atom with a large electronegative difference.
- Often times, this corresponds to a metal and a non-metal.
- The metal is the less electronegative specie and the non-metal is more electronegative
- The metal such as Ca loses two electrons to become positively charge ion.
- The non-metal gains the electrons. Here two atoms of Cl are turned to ions.
- Electrostatic attraction between the metal and non-metal forms the ionic bonding.
learn more;
Ionic bond brainly.com/question/6071838
#learnwithBrainly
To determine the amount of 6.0 M H2SO4 needed for the preparation, equate the number of moles of the 6.0 M and 2.5 M H2SO4 solution. This is done as follows
M1 x V1 = M2 x V2
Substituting the known variables,
(6.0 M) x V1 = (2.5 M) x (4.8 L)
Solving for V1 gives an answer of V1 = 2 L. Thus, to prepare the needed solution, dilute 2 L of 6.0 M H2SO4 solution with water until the volume reach 4.8 L.