In order to determine the vertex of this, you can complete the square. To do that, first set the equation equal to 0, then move the -35 over to the other side by adding. That gives us

. Now we can complete the square. Do this by taking half of the linear term, squaring it, and adding it in to both sides. Our linear term is 2x. Half of 2 is 1, and 1 squared is 1. So we add 1 to both sides, creating something that looks like this:

. We will do the math on the right and get 36, and the left will be expressed as the perfect square binomial we created by doing this whole process.

. Now move the 36 over by subtraction and set it back to equal y and your vertex is apparent. It is (1, -36). You find the x-intercepts when y = 0. That means you need to set your original equation equal to zero and factor it. The easiest, surest way to do this is to use the quadratic formula. Doing that gives us x values of 7 and -5. And you're done!
Daniela has 234 more silver beads than blue beads
Answer:
Assicative property
Step-by-step explanation:
Hope this helped!
Answer:
The critical value is T = 1.895.
The 90% confidence interval for the mean repair cost for the washers is between $48.159 and $72.761
Step-by-step explanation:
We have the standard deviation for the sample, so we use the t-distribution.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 8 - 1 = 6
90% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 6 degrees of freedom(y-axis) and a confidence level of
. So we have T = 1.895, which is the critical value.
The margin of error is:

In which s is the standard deviation of the sample and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 60.46 - 12.301 = $48.159
The upper end of the interval is the sample mean added to M. So it is 60.46 + 12.301 = $72.761
The 90% confidence interval for the mean repair cost for the washers is between $48.159 and $72.761