1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gnesinka [82]
3 years ago
6

What is -4(2x+3)=5-(8x+1)

Mathematics
1 answer:
coldgirl [10]3 years ago
4 0

Solution, solve\:for\:x,\:-4\left(2x+3\right)=5-\left(8x+1\right)\quad :\quad \mathrm{No\:Solution}

Steps:

\mathrm{Expand\:}-4\left(2x+3\right),\\-4\left(2x+3\right),\\\mathrm{Apply\:the\:distributive\:law}:\quad \:a\left(b+c\right)=ab+ac,\\a=-4,\:b=2x,\:c=3,\\-4\cdot \:2x+\left(-4\right)\cdot \:3,\\\mathrm{Apply\:minus-plus\:rules},\\+\left(-a\right)=-a,\\-4\cdot \:2x-4\cdot \:3,\\\mathrm{Simplify}\:-4\cdot \:2x-4\cdot \:3,\\-8x-12

\mathrm{Expand\:}5-\left(8x+1\right),\\5-\left(8x+1\right),\\-\left(8x+1\right),\\5-8x-1,\\\mathrm{Simplify}\:5-8x-1,\\-8x+4

-8x-12=-8x+4

\mathrm{Add\:}12\mathrm{\:to\:both\:sides},\\-8x-12+12=-8x+4+12

\mathrm{Simplify}, \\-8x=-8x+16

\mathrm{Add\:}8x\mathrm{\:to\:both\:sides},\\-8x+8x=-8x+16+8x

\mathrm{Simplify},\\0=16

\mathrm{The\:sides\:are\:not\:equal}

\mathrm{The\:Correct\:Answer\:is\:\mathrm{No\:Solution}}

\mathrm{Hope\:This\:Helps!!!}

\mathrm{-Austint1414}

You might be interested in
Please whoever knows they can solve this, help!
timofeeve [1]
I can’t see the question I think you forgot to upload it
explanation:
7 0
3 years ago
Read 2 more answers
What’s the fourth question about the big wheel please help
Lapatulllka [165]

Answer:  62.83 m

<u>Step-by-step explanation:</u>

The distance of one rotation is the perimeter of the wheel <em>(which is called "circumference" since it is in the shape of a circle)</em>

Circumference (C) = 2 π · radius (r)

C = 2π (10)

  = 20π

  ≈ 62.83

7 0
3 years ago
I'll give brainliest
Zanzabum
Volume formula: length x height x width
2 1/2 x 2 1/2 x 5 = 31 1/4
7 0
2 years ago
What is the equation of the line that passes through the point (2,-2) and has a<br> slope of -1/2?
katrin2010 [14]

Answer:

y = -1/2x - 1

Step-by-step explanation:

We can use the point-slope form of the equation:

y-y1 = m(x-x1)

Where the given y1 = -2, x1 = 2, and m = -1/2. This yields:

y - (-2) = -1/2(x - 2)

y + 2 = -1/2x + 1

y = -1/2x +1 - 2

y = -1/2x - 1

3 0
3 years ago
Cos(−θ)=√3/3, sinθ&lt;0
Delicious77 [7]

Answer:

\sin\theta=-\frac{\sqrt{6}}{3}


Step-by-step explanation:

The given trigonometric equation is \cos(-\theta)=\frac{\sqrt{3} }{3}.

We can either use the Pythagorean identity or the right angle triangle  to solve for \sin\theta.

According to the Pythagorean identity,

\cos^2\theta+\sin^2\theta=1


Recall that, the cosine function is an even function, therefore

\cos(-\theta)=\cos(\theta)


\Rightarrow \cos(\theta)=\frac{\sqrt{3} }{3}.

We substitute this value in to the above Pythagorean identity to get;


(\frac{\sqrt{3}}{3})^2+\sin^2\theta=1


\Rightarrow \frac{3}{9}+\sin^2\theta=1


\Rightarrow \sin^2\theta=1-\frac{3}{9}


\Rightarrow \sin^2\theta=\frac{6}{9}


\Rightarrow \sin\theta=\pm \sqrt{\frac{6}{9}}


\Rightarrow \sin\theta=\pm \frac{\sqrt{6}}{3}


But we were given that,

\sin\theta\:, so we choose the negative value.

\Rightarrow \sin\theta=-\frac{\sqrt{6}}{3}


The correct answer is B







7 0
4 years ago
Other questions:
  • What are the domain, range, and asymptote of h(x) = 2x + 4?
    10·1 answer
  • Help<br> the question is in the pic below
    12·1 answer
  • 35. A pilot can travel 400 miles with the win
    14·1 answer
  • SOMEONE PLEASE HELP ME ASAP PLEASEEEE!!!!​
    12·2 answers
  • Determine the domain of the relation.<br> {(2,3), (9,9), (19,15)}<br> The domain is { }
    7·1 answer
  • Someone please help me
    15·2 answers
  • (x+1).(x/2 +2).(x/3+3).(x/4+4).(x/5+5)
    9·1 answer
  • Calculate the new area using the scale factor of 3
    13·1 answer
  • Round 2.186 to the nearest hundred.​
    5·2 answers
  • The center of circle is on the line y=2x and the line x=1is tangent to the circle at (1,6) find center and radius of the circle?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!