N(3)-8=16
add 8 to both sides
3n=24
Divide each side by three
n=8
Let
A = event that the student is on the honor roll
B = event that the student has a part-time job
C = event that the student is on the honor roll and has a part-time job
We are given
P(A) = 0.40
P(B) = 0.60
P(C) = 0.22
note: P(C) = P(A and B)
We want to find out P(A|B) which is "the probability of getting event A given that we know event B is true". This is a conditional probability
P(A|B) = [P(A and B)]/P(B)
P(A|B) = P(C)/P(B)
P(A|B) = 0.22/0.6
P(A|B) = 0.3667 which is approximate
Convert this to a percentage to get roughly 36.67% and this rounds to 37%
Final Answer: 37%