Answer:
t = sqrt((2 z)/h + ((q_1)^2)/(h^2)) - q_1/h or t = -q_1/h - sqrt((2 z)/h + ((q_1)^2)/(h^2))
Step-by-step explanation:
Solve for t:
z = (h t^2)/2 + t q_1
z = (h t^2)/2 + t q_1 is equivalent to (h t^2)/2 + t q_1 = z:
(h t^2)/2 + t q_1 = z
Divide both sides by h/2:
t^2 + (2 t q_1)/h = (2 z)/h
Add q_1^2/h^2 to both sides:
t^2 + (2 t q_1)/h + q_1^2/h^2 = (2 z)/h + q_1^2/h^2
Write the left hand side as a square:
(t + q_1/h)^2 = (2 z)/h + q_1^2/h^2
Take the square root of both sides:
t + q_1/h = sqrt((2 z)/h + q_1^2/h^2) or t + q_1/h = -sqrt((2 z)/h + q_1^2/h^2)
Subtract q_1/h from both sides:
t = sqrt((2 z)/h + ((q_1)^2)/(h^2)) - q_1/h or t + q_1/h = -sqrt((2 z)/h + q_1^2/h^2)
Subtract q_1/h from both sides:
Answer: t = sqrt((2 z)/h + ((q_1)^2)/(h^2)) - q_1/h or t = -q_1/h - sqrt((2 z)/h + ((q_1)^2)/(h^2))
Answer: you can type this into a cylinder calculator online and get your answer
Step-by-step explanation:
Answer:
idk what's the answer to this... so what's the question?
Answer:
26 degrees
Step-by-step explanation:
take 64*2 and 90*2 and add those together to get 308. Subtract that from 360 to get the total value of x plus the value of the angle across from it. these two angles will be equal so divide them by two to get your answer.
Answer:
20 N
Step-by-step explanation:
because of newton's second law you will use this equation F=ma which means force= mass*acceleration
so your problem should look like this 5*4=20