<span>(x – h)^2 + (y – k)^2 = r<span>^2
this equation is a derivative of the equation of a circle
x^2 + y^2 = r^2
This is from the origin. If we move the in x or y then the radius will change positions in x or y
with h = -3 and k = 1
we can plug in each set of numbers and solve.
we find Z to be on the circle edge!</span></span>
Let's call the stamps A, B, and C. They can each be used only once. I assume all 3 must be used in each possible arrangement.
There are two ways to solve this. We can list each possible arrangement of stamps, or we can plug in the numbers to a formula.
Let's find all possible arrangements first. We can easily start spouting out possible arrangements of the 3 stamps, but to make sure we find them all, let's go in alphabetical order. First, let's look at the arrangements that start with A:
ABC
ACB
There are no other ways to arrange 3 stamps with the first stamp being A. Let's look at the ways to arrange them starting with B:
BAC
BCA
Try finding the arrangements that start with C:
C_ _
C_ _
Or we can try a little formula; y×(y-1)×(y-2)×(y-3)...until the (y-x) = 1 where y=the number of items.
In this case there are 3 stamps, so y=3, and the formula looks like this: 3×(3-1)×(3-2).
Confused? Let me explain why it works.
There are 3 possibilities for the first stamp: A, B, or C.
There are 2 possibilities for the second space: The two stamps that are not in the first space.
There is 1 possibility for the third space: the stamp not used in the first or second space.
So the number of possibilities, in this case, is 3×2×1.
We can see that the number of ways that 3 stamps can be attached is the same regardless of method used.
Answer:
Choice #1) multiplied by 3
Answer:
Option C g(x) = -4
Step-by-step explanation:
In the question a function f(x) =4 is given and we are required to tell the reflection g(x) of the given function.
The rule of reflection for a function says that:
f(x) -> - f(x)
So, in our case the value of function is f(x) = 4, after reflection the value across the x-axis the value will become negative i.e -4,
so the required function g(x) = - 4
Hence Option C g(x) = -4 is correct option.