1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elena-2011 [213]
3 years ago
11

Find this area of a triangle

Mathematics
1 answer:
KATRIN_1 [288]3 years ago
4 0
24 should be your answer!
You might be interested in
P(x) = x + 1x² – 34x + 343<br> d(x)= x + 9
Feliz [49]

Answer:

x=\frac{9}{d-1},\:P=\frac{-297d+378}{\left(d-1\right)^2}+343

Step-by-step explanation:

Let us start by isolating x for dx = x + 9.

dx - x = x + 9 - x > dx - x = 9.

Factor out the common term of x > x(d - 1) = 9.

Now divide both sides by d - 1 > \frac{x\left(d-1\right)}{d-1}=\frac{9}{d-1};\quad \:d\ne \:1. Go ahead and simplify.

x=\frac{9}{d-1};\quad \:d\ne \:1.

Now, \mathrm{For\:}P=x+1x^2-34x+343, \mathrm{Subsititute\:}x=\frac{9}{d-1}.

P=\frac{9}{d-1}+1\cdot \left(\frac{9}{d-1}\right)^2-34\cdot \frac{9}{d-1}+343.

Group the like terms... 1\cdot \left(\frac{9}{d-1}\right)^2+\frac{9}{d-1}-34\cdot \frac{9}{d-1}+343.

\mathrm{Add\:similar\:elements:}\:\frac{9}{d-1}-34\cdot \frac{9}{d-1}=-33\cdot \frac{9}{d-1} > 1\cdot \left(\frac{9}{d-1}\right)^2-33\cdot \frac{9}{d-1}+343.

Now for 1\cdot \left(\frac{9}{d-1}\right)^2 > \mathrm{Apply\:exponent\:rule}: \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c} > \frac{9^2}{\left(d-1\right)^2} = 1\cdot \frac{9^2}{\left(d-1\right)^2}.

\mathrm{Multiply:}\:1\cdot \frac{9^2}{\left(d-1\right)^2}=\frac{9^2}{\left(d-1\right)^2}.

Now for 33\cdot \frac{9}{d-1} > \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} > \frac{9\cdot \:33}{d-1} > \frac{297}{d-1}.

Thus we then get \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}+343.

Now we want to combine fractions. \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}.

\mathrm{Compute\:an\:expression\:comprised\:of\:factors\:that\:appear\:either\:in\:}\left(d-1\right)^2\mathrm{\:or\:}d-1 > This\: is \:the\:LCM > \left(d-1\right)^2

\mathrm{For}\:\frac{297}{d-1}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:d-1 > \frac{297}{d-1}=\frac{297\left(d-1\right)}{\left(d-1\right)\left(d-1\right)}=\frac{297\left(d-1\right)}{\left(d-1\right)^2}

\frac{9^2}{\left(d-1\right)^2}-\frac{297\left(d-1\right)}{\left(d-1\right)^2} > \mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}> \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}

\frac{9^2-297\left(d-1\right)}{\left(d-1\right)^2} > 9^2=81 > \frac{81-297\left(d-1\right)}{\left(d-1\right)^2}.

Expand 81-297\left(d-1\right) > -297\left(d-1\right) > \mathrm{Apply\:the\:distributive\:law}: \:a\left(b-c\right)=ab-ac.

-297d-\left(-297\right)\cdot \:1 > \mathrm{Apply\:minus-plus\:rules} > -\left(-a\right)=a > -297d+297\cdot \:1.

\mathrm{Multiply\:the\:numbers:}\:297\cdot \:1=297 > -297d+297 > 81-297d+297 > \mathrm{Add\:the\:numbers:}\:81+297=378 > -297d+378 > \frac{-297d+378}{\left(d-1\right)^2}

Therefore P=\frac{-297d+378}{\left(d-1\right)^2}+343.

Hope this helps!

5 0
4 years ago
5) A taxi driver charges $5 plus $1.75 for each mile. He charges a customer $12 for
ELEN [110]

i dont kniww×wwwwwwwww kud

5 0
3 years ago
7 times as much as the sum of 1/3 and 4/5​
Anika [276]
The correct answer should 1.1333
5 0
3 years ago
Read 2 more answers
Which is the constant term in the equation given in standard from 5x+3y=15
Alisiya [41]

Answer:

15

Step-by-step explanation:

The constant is the term without the variable

5x+3y=15

15 is the constant

4 0
3 years ago
Determine whether each equation has one solution, no solution, or infinite solutions.
Sati [7]

Answer:

a. has one solution

b. infinite solution

Step-by-step explanation:

a.

2(x - 1) + 6 = 4x - 22

2x - 2 + 6 = 4x - 22

2x - 4x = 2 - 6 - 22

-2x = -26

x = 26/2

x = 13

b.

6(2x + 1) – 2 = 12x + 4

12x + 6 - 2 = 12x + 4

12x - 12x = 4 + 2 - 6

0 = 0

6 0
4 years ago
Other questions:
  • Edgar builds a sand castle with a rectangular base. The side lengths of the base are 25 in. And 16 in. He wants to surround the
    8·1 answer
  • The equation of a circle is given below.
    9·1 answer
  • A box contains 12 plastic forks and 6 plastic knives. If two utensils are chosen at random from the box without replacement, wha
    13·1 answer
  • You realize that more than 8000 gallons per year was a lot of water to waste with a leaky faucet. You fixed your faucet so that
    8·1 answer
  • What is the range of the function y = 2x2 + x - 1 when the domain is {-2, -1, 0, 1}?
    13·1 answer
  • The graph shows the relationship between the cost of dinner and the number of plates purchase Dinner Party Plates Purchased Whic
    12·2 answers
  • Yuma needs a singer. Singer A is offering her services for an initial $75 in addition to $35 per hour. Singer B is offering his
    5·1 answer
  • 4x - 4 + 112 = 23x - 6
    10·2 answers
  • The equation for the line shown in the graph below is y= 2x + b in slope intercept form.
    6·1 answer
  • Multiply.<br> 12.1 x 104<br> o 1,210<br> o 121,000<br> o 1,210,000
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!