Answer:
(- 1/2 , √3/2)
Step-by-step explanation:
t=20π/3
t' = 20π/3 - 6π = 2π/3 (120°) ... 2nd quadrant
If we start from (1,0) of unit circle, the coordinate of terminal point (x,y)
OF/OE = - cos 60° = x / 1 = - 1/2
FE/OE = sin 60° = y/1 = √3/2
The inequality is used to solve how many hours of television Julia can still watch this week is 
The remaining hours of TV Julia can watch this week can be expressed is 3.5 hours
<h3><u>Solution:</u></h3>
Given that Julia is allowed to watch no more than 5 hours of television a week
So far this week, she has watched 1.5 hours
To find: number of hours Julia can still watch this week
<em>Let "x" be the number of hours Julia can still watch television this week</em>
"no more than 5" means less than or equal to 5 ( ≤ 5 )
Juila has already watched 1.5 hours. So we can add 1.5 hours and number of hours Julia can still watch television this week which is less than or equal to 5 hours
number of hours Julia can still watch television this week + already watched ≤ Total hours Juila can watch

Thus the above inequality is used to solve how many hours of television Julia can still watch this week.
Solving the inequality,

Thus Julia still can watch Television for 3.5 hours
Answer:
<h2>
A. Zero, because the discriminant is negative. </h2>
Step-by-step explanation:
I just did it.
<em>Note:</em><em> You missed to add some of the details of the question.
</em>
<em>Hence, I am solving your concept based on an assumed graph which I have attached. It would anyways clear your concept.</em>
<em></em>
Answer:
Please check the explanation.
Step-by-step explanation:
Given the right angled-triangle ABC as shown in the attached diagram
From the triangle:
Ф= ∠C = 30°
AB = 6 units
BC = y
tan Ф = opp ÷ adjacent
The opposite of ∠C = 30° is the length '6'.
The adjacent of ∠C = 30° is the length 'y'.
As Ф= ∠C = 30°
so
tan Ф = opp ÷ adjacent
tan 30 = 5 ÷ y
1 ÷ √3 = 5 ÷ y
y = 8.7 units
Therefore, the length of the unknown side length 'y' is 8.7 units.