let's firstly convert the mixed fractions to improper fractions and then divide.
![\bf \stackrel{mixed}{17\frac{13}{18}}\implies \cfrac{17\cdot 18 +13}{18}\implies \stackrel{improper}{\cfrac{319}{18}}~\hfill \stackrel{mixed}{2\frac{7}{9}}\implies \cfrac{2\cdot 9+7}{9}\implies \stackrel{improper}{\cfrac{25}{9}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B17%5Cfrac%7B13%7D%7B18%7D%7D%5Cimplies%20%5Ccfrac%7B17%5Ccdot%2018%20%2B13%7D%7B18%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B319%7D%7B18%7D%7D~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B2%5Cfrac%7B7%7D%7B9%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Ccdot%209%2B7%7D%7B9%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B25%7D%7B9%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \cfrac{319}{18}\div \cfrac{25}{9}\implies \cfrac{319}{\underset{2}{~~\begin{matrix} 18 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}}\cdot \cfrac{\stackrel{1}{~~\begin{matrix} 9 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}}{25}\implies \cfrac{319}{50}\implies 6\frac{19}{50}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B319%7D%7B18%7D%5Cdiv%20%5Ccfrac%7B25%7D%7B9%7D%5Cimplies%20%5Ccfrac%7B319%7D%7B%5Cunderset%7B2%7D%7B~~%5Cbegin%7Bmatrix%7D%2018%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7D%5Ccdot%20%5Ccfrac%7B%5Cstackrel%7B1%7D%7B~~%5Cbegin%7Bmatrix%7D%209%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7D%7B25%7D%5Cimplies%20%5Ccfrac%7B319%7D%7B50%7D%5Cimplies%206%5Cfrac%7B19%7D%7B50%7D)
To find the same value as 3 x 1/10 you first have to solve 3 x 1/10
so how to do this is you have to make 3 into a fraction
so to make 3 into a fraction you can put 3 as the numerator and 1 as the denominator
so you multiply

so 3/10 has the same value as 3x1/10
HOPE THIS HELPS!!!
Let's actually find the roots, using the quadratic formula:
<span>p(x)=x^2+x+3 gives us a=1, b=1 and c=3.
-1 plus or minus sqrt(1^2-4(1)(3))
Then x = -----------------------------------------------
2
The discriminant here is negative, so the roots x will be complex:
-1 plus or minus sqrt(-11) -1 plus or minus i*sqrt(11)
x = ---------------------------------- = -------------------------------------
2 2
These are irrational roots; they cannot be expressed as the ratios of integers.</span>
Y - 0.32y = (1 - 0.32)y = 0.68y
Answer:
a) integral = 24.72
b) |Error| ≤ 0.4267
Step-by-step explanation:
a)
The integral:

can be approximated with the midpoint rule, as follows:
6.7*(0.8 - 0.0) + 8.9*(1.6 - 0.8) + 6.9*(2.4-1.6) + 8.4*(3.2 - 2.4) = 24.72
(that is, all the intervals are 0.8 units length and f(x) is evaluated in the midpoint of the interval)
b)The error bound for the midpoint rule with <em>n</em> points is:
|Error| ≤ K*(b - a)^3/(24*n^2)
where <em>b</em> and are the limits of integration of the integral and K = max |f''(x)|
Given that -5 ≤ f''(x) ≤ 1, then K = 5. Replacing into the equation:
|Error| ≤ 5*(3.2 - 0)^3/(24*4^2) = 0.4267