Answer:
x = - 4, x = - 3
Step-by-step explanation:
To find the zeros equate f(x) to zero, that is
x² + 7x + 12 = 0
To factorise the quadratic
Consider the factors of the constant term (+ 12) which sum to give the coefficient of the x- term (+ 7)
The factors are + 4 and + 3, since
4 × 3 = 12 and 4 + 3 = 7, hence
(x + 4)(x + 3) = 0 ← in factored form
Equate each factor to zero and solve for x
x + 4 = 0 ⇒ x = - 4
x + 3 = 0 ⇒ x = - 3
Well first off the cia will say that they didn’t send him, but we know the truth. Second off that number is the last 4 digits to the illuminatis president, Tom Hanks. Lastly, that number is also the number of kids Joe Biden has sniffed in the last year.
Answer with Step-by-step explanation:
We are given that two matrices A and B are square matrices of the same size.
We have to prove that
Tr(C(A+B)=C(Tr(A)+Tr(B))
Where C is constant
We know that tr A=Sum of diagonal elements of A
Therefore,
Tr(A)=Sum of diagonal elements of A
Tr(B)=Sum of diagonal elements of B
C(Tr(A))=
Sum of diagonal elements of A
C(Tr(B))=
Sum of diagonal elements of B

Tr(C(A+B)=Sum of diagonal elements of (C(A+B))
Suppose ,A=![\left[\begin{array}{ccc}1&0\\1&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C1%261%5Cend%7Barray%7D%5Cright%5D)
B=![\left[\begin{array}{ccc}1&1\\1&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%5C%5C1%261%5Cend%7Barray%7D%5Cright%5D)
Tr(A)=1+1=2
Tr(B)=1+1=2
C(Tr(A)+Tr(B))=C(2+2)=4C
A+B=![\left[\begin{array}{ccc}1&0\\1&1\end{array}\right]+\left[\begin{array}{ccc}1&1\\1&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C1%261%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%5C%5C1%261%5Cend%7Barray%7D%5Cright%5D)
A+B=![\left[\begin{array}{ccc}2&1\\2&2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%261%5C%5C2%262%5Cend%7Barray%7D%5Cright%5D)
C(A+B)=![\left[\begin{array}{ccc}2C&C\\2C&2C\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2C%26C%5C%5C2C%262C%5Cend%7Barray%7D%5Cright%5D)
Tr(C(A+B))=2C+2C=4C
Hence, Tr(C(A+B)=C(Tr(A)+Tr(B))
Hence, proved.
Answer:
The answer is D
Step-by-step explanation:
Since the input is -6, you input it into the equation. That would make it f(-6)=-(-6)-1 which would be equivalent to f(-6)=6-1 , as the negatives at the beginning of the equation cancel each other out and make it positive. Then you solve and get 5, which is your output. Hope I could help :)