12/3 = x/8
Cross multiply
3x = 96
Eliminate
3x/3 = 96/3
x = 32
Answer:
0.999987
Step-by-step explanation:
Given that
The user is a legitimate one = E₁
The user is a fraudulent one = E₂
The same user originates calls from two metropolitan areas = A
Use Bay's Theorem to solve the problem
P(E₁) = 0.0131% = 0.000131
P(E₂) = 1 - P(E₁) = 0.999869
P(A/E₁) = 3% = 0.03
P(A/E₂) = 30% = 0.3
Given a randomly chosen user originates calls from two or more metropolitan, The probability that the user is fraudulent user is :




= 0.999986898 ≈ 0.999987
Answer:
The proportion of students whose height are lower than Darnell's height is 71.57%
Step-by-step explanation:
The complete question is:
A set of middle school student heights are normally distributed with a mean of 150 centimeters and a standard deviation of 20 centimeters. Darnel is a middle school student with a height of 161.4cm.
What proportion of proportion of students height are lower than Darnell's height.
Answer:
We first calculate the z-score corresponding to Darnell's height using:

We substitute x=161.4 ,
, and
to get:

From the normal distribution table, we read 0.5 under 7.
The corresponding area is 0.7157
Therefore the proportion of students whose height are lower than Darnell's height is 71.57%