The answer is 25g. Let me know if you need an explanation
ΔG deg will be negative above 7.27e+3 K.
<u>Explanation:</u>
- The ΔG deg with the temperature can be found using the formula and the formula is given below
- ΔG deg = ΔH deg - T ΔS deg
- Given data, ΔH deg = 181kJ and ΔSdeg=24.9J/K
- -T ΔS deg will be always negative and ΔG deg = ΔH deg will be positive and ΔG deg will be negative at relatively high temperatures and positive at relatively low temperatures
- solving the equation and substitute ΔGdeg=0
- ΔGdeg = ΔHdeg - T ΔSdeg
- T= ΔHdeg/ΔSdeg
- T=181 kJ / 2.49e-2 kJK-1
- By simplification we get
- T=7.27 × 10^3 K.
- Therefore, Go will be negative above 7.27 × 10^3 K
- Since ΔG deg = -RT lnK, when ΔGdeg < 0, K > 1 so the reaction will have K > 1 above 7.27 × 10^3 K.
- ΔG deg will be negative above 7.27e+3 K.
<u></u>
<u />
The two atoms shown in the equation are CALCIUM and oxygen.
<span>You start off with a neutral calcium atom with a shell of two electrons, a shell of 8 around that, a shell of 8 around that, and a shell containing 2...with no charge. </span>
<span>20 protons + 20 electrons. </span>
<span>You also have an oxygen atom with a shell of 2, and a shell of 6...with no charge. </span>
<span>8 protons + 8 electrons. </span>
<span>Each ionizes to form a calcium ion with 2 electrons removed (from the outer shell), leaving a +2 charge (20 protons, 18 electrons)... </span>
<span>and an oxygen ion with 2 electrons added (to the outer shell), leaving a -2 charge (8 protons, 10 electrons). </span>
<span>Their electrostatic attraction causes them to come together to form an ionic compound of CaO in a crystal lattice.</span>
Answer:
2.06 × 10⁻¹⁰
Explanation:
Let's consider the solution of a generic compound AB₂.
AB₂(s) ⇄ A²⁺(aq) + 2B⁻(aq)
We can relate the molar solubility (S) with the solubility product constant (Kps) using an ICE chart.
AB₂(s) ⇄ A²⁺(aq) + 2B⁻(aq)
I 0 0
C +S +2S
E S 2S
The solubility product constant is:
Kps = [A²⁺] × [B⁻]² = S × (2S)² = 4 × S³ = 4 × (3.72 × 10⁻⁴)³ = 2.06 × 10⁻¹⁰
<>"The researchers stress that their approach does not offer a complete roadmap for sustainable development, but does provide an important element by identifying critical planetary boundaries. "Human pressure on the Earth system has reached a scale where abrupt global environmental change can no longer be excluded."<>