This is what I got. Hope it helps :)
Empirical formula mass
Molecular fornula mass:-180g/mol
- n=Molecular formula mass/Empirical formula mass
- m=180/30
- n=6
Molecular formula:-
- n×Empirical formula
- 6(CH_2O
- C_6H_12 O_6
Answer:

Explanation:
Balanced equation: CO(g) + H₂O(g) ⟶ CO₂(g) + H₂(g)
We can calculate the enthalpy change of a reaction by using the enthalpies of formation of reactants and products

(a) Enthalpies of formation of reactants and products

(b) Total enthalpies of reactants and products

(c) Enthalpy of reaction
Answer:
For this experiment we are going to take plate 1 as the control plate, so, in it there will be just E. coli in LB/agar; in plate 2, we are going to put E. coli in LB/agar and some ampicillin. Then, we have to wait for the E. coli colonies to form. After a while, the E. coli growth can be compared on both plates and determine if ampicillin affects or not the E. coli colonies.
Explanation:
If the ampicillin affects negatively E. coli colonies, we are going to observe that in plate 1 (control plate) there are E. coli colonies growing, but in plate 2, there is no E. coli colonies or, at least, there is a fewer number of colonies on it. If ampicillin doesn't affect E.coli, plate 1 (control) and plate 2 (ampicillin experiment) are going to be similar in number of colonies.