1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ivanzaharov [21]
4 years ago
6

Please help me with this ( click on picture )

Mathematics
1 answer:
jeyben [28]4 years ago
3 0

Answer:

-13, -12, -11

Step-by-step explanation:

-13 is the lowest, -12 is the middle, -11 is the highest.

-13 + (-12) = -25 + (-11) = -36

Hope this helps! :)

You might be interested in
Which correctly describes how to determine the measure of angle 1?
exis [7]

Answer: 105 and angel 2 are alternate exterior angles, angle 2 is 105 degrees. Angles 1 and 2 and supplementary so 180-105 is 75. Angle 1 measures 75 degrees.

Step-by-step explanation:

The answer is A.

4 0
3 years ago
Read 2 more answers
Find the area of the circle. Round to the nearest tenth. Use 3.14 or 22/7 for pie.
maks197457 [2]

Answer:

98.5 cm2

Step-by-step explanation:

6 0
3 years ago
PLEASE HELP WILL MARK BRAINLIEST!!(plz show work too)
trapecia [35]

\huge \bf༆ Answer ༄

Let the capacity of bus be x students

And van be y students, now ;

From the given statements we get two equations ~

{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:2x + 10y = 260 \:   \:  \:  \: \:  (1)

{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:13x + 5y = 670 \:  \:  \:  \:  \: (2)

multiply the equation (2) with 2 [ it won't change the values ]

{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:2x + 10y = 260 \: \:  \:  \:   \:  \:  \:  \:  \: (1)

{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:26x + 10y = 1340 \:  \:  \:  \:  \: (3)

Now, deduct equation (1) from equation (3)

{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:26x + 10y - 2x - 10y = 1340 - 260

{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:24x = 1080

{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:x = 1080 \div 24

{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:x = 45

Therefore each bus can carry (x) = 45 students

Now, plug the value of x in equation (1) to find y ~

{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:2x + 10y = 260

{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:(2 \times 45) + 10y = 260

{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:90 + 10y = 260

{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:10y = 260 - 90

{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:10y = 170

{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:y = 170 \div 10

{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:y = 17

Hence, each van can carry (y) = 17 students in total.

5 0
3 years ago
Find all of the equilibrium solutions. Enter your answer as a list of ordered pairs (R,W), where R is the number of rabbits and
zloy xaker [14]

Answer:

(0,0)   (4000,0) and (500,79)

Step-by-step explanation:

Given

See attachment for complete question

Required

Determine the equilibrium solutions

We have:

\frac{dR}{dt} = 0.09R(1 - 0.00025R) - 0.001RW

\frac{dW}{dt} = -0.02W + 0.00004RW

To solve this, we first equate \frac{dR}{dt} and \frac{dW}{dt} to 0.

So, we have:

0.09R(1 - 0.00025R) - 0.001RW = 0

-0.02W + 0.00004RW = 0

Factor out R in 0.09R(1 - 0.00025R) - 0.001RW = 0

R(0.09(1 - 0.00025R) - 0.001W) = 0

Split

R = 0   or 0.09(1 - 0.00025R) - 0.001W = 0

R = 0   or  0.09 - 2.25 * 10^{-5}R - 0.001W = 0

Factor out W in -0.02W + 0.00004RW = 0

W(-0.02 + 0.00004R) = 0

Split

W = 0 or -0.02 + 0.00004R = 0

Solve for R

-0.02 + 0.00004R = 0

0.00004R = 0.02

Make R the subject

R = \frac{0.02}{0.00004}

R = 500

When R = 500, we have:

0.09 - 2.25 * 10^{-5}R - 0.001W = 0

0.09 -2.25 * 10^{-5} * 500 - 0.001W = 0

0.09 -0.01125 - 0.001W = 0

0.07875 - 0.001W = 0

Collect like terms

- 0.001W = -0.07875

Solve for W

W = \frac{-0.07875}{ - 0.001}

W = 78.75

W \approx 79

(R,W) \to (500,79)

When W = 0, we have:

0.09 - 2.25 * 10^{-5}R - 0.001W = 0

0.09 - 2.25 * 10^{-5}R - 0.001*0 = 0

0.09 - 2.25 * 10^{-5}R = 0

Collect like terms

- 2.25 * 10^{-5}R = -0.09

Solve for R

R = \frac{-0.09}{- 2.25 * 10^{-5}}

R = 4000

So, we have:

(R,W) \to (4000,0)

When R =0, we have:

-0.02W + 0.00004RW = 0

-0.02W + 0.00004W*0 = 0

-0.02W + 0 = 0

-0.02W = 0

W=0

So, we have:

(R,W) \to (0,0)

Hence, the points of equilibrium are:

(0,0)   (4000,0) and (500,79)

4 0
3 years ago
Write 3:15 as a unite rate
hammer [34]
0.2:1

I divided 3 by 15 and got 0.2 and then divided 15 by 15 to get one
3 0
3 years ago
Other questions:
  • Solving Inequalities<br><br>Algebra 1​
    13·1 answer
  • What is the measure of X PLZ HELP - thank you and much love ;)
    10·1 answer
  • Please help?i really need help with this.
    11·1 answer
  • What is 446,221 rounded to the nearest ten thousands
    11·2 answers
  • Help me with this math
    15·2 answers
  • What is the area of a triangle whose vertices are D(3, 3) , E(3, −1) , and F(−2, −5) ?
    9·1 answer
  • You pay $8 for 16 ounces of sliced turkey
    7·2 answers
  • APML - ATAQ. Solve for x and QR<br><br> HELP ASAP!!!!! PLZZZZZ
    11·1 answer
  • Please help I don’t understand this and it’s due today in a bit
    15·1 answer
  • Reflect the point (6-5) over the x-axis A (6.5) B. (5.-6 C (-6-5) D. 6.5​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!