The square box is enough to fit the pizza with a diameter of 10 inches inside. Since the area of the square box is more than the area of the pizza, the pizza fits easily in the square box.
<h3>What is the area of the circle and the square?</h3>
The area of the circle is
Ac = πr² = πd²/4 sq. units
Where r is the radius and d is the diameter of the circle.
The area of the square is given by
As = s² sq. units
Where s is the length of the side of a square.
<h3>Calculation:</h3>
It is given that a pizza(in a circular shape) with a diameter d = 10 in is to be placed in a square box of the same length as the diameter of the pizza.
So,
The area of pizza is
Ap = Ac = πd²/4 sq. units
= π(10)²/4
= 25π
= 78.54 sq. in
Then, the area of the square box with the length same as the diameter of the pizza is,
As = d²
= 10²
= 100 sq. in
Since the area of the square is more than the area of the pizza (100 sq. inch > 78.54 sq. inch), the pizza easily fits into the square box.
Learn more about the area of a circle here:
brainly.com/question/15673093
#SPJ1
Multiplication is when you times two different numbers together where its negative or postive(you can multiple pretty much anything together)but combining like terms are number or letters thats the same. For instance, say if i have 4x+7-2x+3, i would combine each term that has something in common with it,like, 4x and 2x because both has X and i will combine 7 and 3 because those two are regular numbers and does not have an X like the others. I Hope That helps!
Let X be a discrete random variable with geometric distribution.
Let x be the number of tests and p the probability of success in each trial, then the probability distribution is:
P (X = x) = p * (1-p) ^ (x-1). With x = (1, 2, 3 ... n).
This function measures the probability P of obtaining the first success at the x attempt.
We need to know the probability of obtaining the first success at the third trial.
Where a success is defined as a customer buying online.
The probability of success in each trial is p = 0.3.
So:
P (X = 3) = 0.3 * (1-0.3) ^ (3-1)
P (X = 3) = 0.147
The probability of obtaining the first success at the third trial is 14.7%