I have no idea but if anyone is seeing this PLEASE ANSWER MY WUESTIONS ON MY PAGE i will give you the brainliest
2000 BC and was found in tubes in Egyptian tombs dated from 1500BC
hope this helps
An inert gas will not react with either the reactants or the products, so it will have no effect on the product/reactant ratio, and therefore, it will have no effect on equilibrium.
Answer:
0.1 M
<h3>
Explanation:</h3>
- Molarity refers to the concentration of a solution in moles per liter.
- It is calculated by dividing the number of moles of solute by the volume of solvent;
- Molarity = Moles of the solute ÷ Volume of the solvent
<u>In this case, we are given;</u>
- Number of moles of the solute, NH₄Cl as 0.42 moles
- Volume of the solvent, water as 4200 mL or 4.2 L
Therefore;
Molarity = 0.42 moles ÷ 4.2 L
= 0.1 mol/L or 0.1 M
Thus, the molarity of the solution will be 0.1 M
Answer:- As per the question is asked, 35.0 moles of acetylene gives 70 moles of carbon dioxide but if we solve the problem using the limiting reactant which is oxygen then 67.2 moles of carbon dioxide will form.
Solution:- The balanced equation for the combustion of acetylene is:

From the balanced equation, two moles of acetylene gives four moles of carbon dioxide. Using dimensional analysis we could show the calculations for the formation of carbon dioxide by the combustion of 35.0 moles of acetylene.

= 
The next part is, how we choose 35.0 moles of acetylene and not 84.0 moles of oxygen.
From balanced equation, there is 2:5 mol ratio between acetylene and oxygen. Let's calculate the moles of oxygen required to react completely with 35.0 moles of acetylene.

= 
Calculations shows that 87.5 moles of oxygen are required to react completely with 35.0 moles of acetylene. Since only 84.0 moles of oxygen are available, the limiting reactant is oxygen, so 35.0 moles of acetylene will not react completely as it is excess reactant.
So, the theoretical yield should be calculated using 84.0 moles of oxygen as:

= 