The answer is 267.93 g
Molar mass of CaBr2 is the sum of atomic masses of Ca and Br:
Mr(CaBr2) = Ar(Ca) + 2Ar(Br)
Ar(Ca) = 40 g/mol
Ar(Br) = 79.9 g/mol
Mr(CaBr2) = 40 + 2 * 79.9 = 199.8 g/mol
The percentage of Br in CaBr2 is:
2Ar(Br) / Mr(CaBr2) * 100 = 2 * 79.9 / 199.8 * 100 = 79.98%
Now make a proportion:
x g in 79.98%
335 g in 100%
x : 79.98% = 335 g : 100%
x = 79.98% * 335 g : 100%
x = 267.93 g
Answer:
113.8g
Explanation:
Statement of problem: mass of 1.946mole of NaCl
Given parameters:
Number of moles of NaCl = 1.946mole
Unknown: mass of NaCl
Solution
To find the mass of NaCl, we apply the concept of moles which expresses the relationship between number of moles and mass according to the equation below:
Number of moles = 
To find the molar mass of NaCl:
the atomic mass of Na = 23g
atomic mass of Cl = 35.5g
Molar mass of NaCl = (23 + 35.5) = 58.5gmol⁻¹
Mass of NaCl = Number of moles x molar mass of NaCl
Mass of NaCl = 1.946 x 58.5 = 113.8g
Answer:
hshssytdtctdyeheb
Explanation:
yye6d66d6d6dududyydydydyehwj2
Complete question is;
A drop of water has a volume of approximately 7 × 10⁻² ml. How many water molecules does it contain? The density of water is 1.0 g/cm³.
This question will require us to first find the number of moles and then use avogadro's number to get the number of water molecules.
<em><u>Number of water molecules = 2.34 × 10²¹ molecules</u></em>
We are given;
Volume of water; V = 7 × 10⁻² ml
Density of water; ρ = 1 g/cm³ = 1 g/ml
Formula for mass is; m = ρV
m = 1 × 7 × 10⁻²
m = 7 × 10⁻² g
from online calculation, molar mass of water = 18.01 g/mol
Number of moles(n) = mass/molar mass
Thus;
n = (7 × 10⁻²)/18.01
n = 3.887 × 10⁻³ mol
from avogadro's number, we know that;
1 mol = 6.022 × 10²³ molecules
Thus,3.887 × 10⁻³ mol will give; 6.022 × 10²³ × 3.887 × 10⁻³ = 2.34 × 10²¹ molecules
Read more at; brainly.in/question/17990661