Answer:
<h2>15 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

But from the question
volume = final volume of water - initial volume of water
volume = 165 - 150 = 15 mL
We have

We have the final answer as
<h3>15 g/mL</h3>
Hope this helps you
The number of moles of NH3 that could be made would be 0.5 moles
<h3>Stoichiometric reactions</h3>
From the balanced equation of the reaction:
N2 (g) + 3 H2(g) ----> 2NH3 (g)
The mole ratio of N2 to H2 is 1:3
Thus, for 0.50 moles of N2, 1.5 moles of H2 should be present. But 0.75 moles of H2 was allowed to react. Meaning that H2 is limiting in this case.
Mole ratio of H2 and NH3 = 3:2
Thus for 0.75 moles H2, the mole of NH3 that would be produced will be:
2 x 0.75/3 = 0.5 moles
More on stoichiometric calculations can be found here: brainly.com/question/8062886
Molarity (m) is defined as the number of moles to solute (n) the volume (v) of the solution in liters is important to note that the molarity is defined as moles of solute per liter of solution not moles of solute per liter of solute.
Answer:
Quartz.
Explanation:
According to the characteristics given in the question the mineral must surely be Quartz.
Quartz does not react with hydrochloric acid.
Its is pink in color and has anon metallic luster. It has a specific gravity of 2.65. Quartz is continuous framework of SiO4 , with each oxygen being shared with two tetrahedra, giving an overall chemical formula of SiO2.
Answer:
It is expensive, largely because of the amount of electricity required in the extraction process. Aluminium ore is called bauxite . The bauxite is purified to produce aluminium oxide, a white powder from which aluminium can be extracted. The extraction is done by electrolysis.