The difference in an area with high concentration and an area with low concentration is called the concentration gradient.
<h3>
What is Concentration Gradient ?</h3>
A concentration gradient occurs when the concentration of particles is higher in one area than another.
In passive transport, particles will diffuse down a concentration gradient, from areas of higher concentration to areas of lower concentration, until they are evenly spaced.
This difference in an area with high concentration and an area with low concentration is called the concentration gradient.
Learn more about diffusion here ;
brainly.com/question/24746577
#SPJ1
Answer:
C)52g KCl in 100g water at 80°C
Explanation:
A saturated solution is one that contains as much solute as it can dissolve in the presence of excess solute at that particular temperature.
A solutibility curve is a graph that shows the variability with temperature of the solubility of a solute in a given solvent. A solutibility curve can provide information of whether a solution formed frommthe solute and solvent are saturated or not at a given temperature.
From the solubility curve in the attachment below:
A) A saturated solution of NH₄Cl will contain about 52 g solute per 100 g sat 50 °C. Thus, a solution of 40 g NH₄Cl in 100 g water at 50 °C is an unsaturated solution.
B) A saturated solution of SO₂ at 10°C will contain about 70 g of solute in 100 g of water. Thus a solution of 2g SO₂ in 100g water at 10°C is an unsaturated solution.
C) A saturated solution of KCl at 80 °C will contain about 52 g of solute in 100 g of water. Thus, a solution of 52g KCl in 100g water at 80°C is a saturated solution.
D) A saturated solution of Kl at 20 °C will contain about 145 g of solute in 100 g of water. Thus, a solution of 120g KI in 100g water at 20°C is an unsaturated solution.
Answer:
atom is the answer I think
your answer is A if i am wrong let me know
Answer:check explanation
Explanation:
(a). HOW THE DISTANCE BETWEEN ELECTRON DONOR AND ACCEPTOR AFFECTS THE RATE OF ELECTRON TRANSFER IN BIOLOGICAL SYSTEM:
Distance between the acceptor and the donor can affect in two ways; short distance and long distance effect.
Short distance causes
electronic orbitals of donor and acceptor directly overlap whereas in LONG DISTANCE reactions this coupling is indirect because of
sequential overlaps of atomic orbitals of the donor, the intervening medium, and the orbitals of the acceptor.
(b). HOW REORGANIZATION ENERGY OF REDOX ACTIVE SPECIE SURROUNDING MEDIUM AFFECTS:
the reorganized energy does not depend on the pre-existing intra molecule electric field. The charge transferred inside the molecule interacts with its aqueous surroundings.
Reorganized energy can be calculated using Poisson-Boltzmann equation.