They are substitution reactions
hope that helps
decameters - meters: multiply by 10
meters to meters: multiply by 1
centimeters to meters: divide by 100
millimeters to meters: divide by 1000
For the rows at the bottom:
hectometer row: 100, multiply by 100, 4500
decameter row: 10, multiply by 10, 450
meter row: 1, multiply by 1, 45
decimeter row: 0.1, divide by 10, 4.5
centimeter row: 0.01, divide by 100, 0.45
im guessing theres a millimeter row at the bottom:
millimeter row: 0.001, divide by 1000, 0.045
hope this helps!
A physical change<span> in a substance doesn't </span>change<span> what the substance is. In a </span>chemical change<span> where there is a </span>chemical reaction<span>, a new substance is formed and energy is either given off or absorbed.</span>
Answer:
The answer is E. All of the statements describe the anomeric carbon.
Explanation:
When a sugar switches from its open form to its ring form, the carbon from the carbonyl (aldehyde if it is an aldose, or a ketone in the case of a ketose) suffers a nucleophilic addition by one of the hydroxyls in the chain, preferably one that will form a 5 or 6 membered ring after the reaction.
As such, the anomeric carbon will have two oxygens attached (The original one and the one that bonded when the ring closed).
It will be chiral, given that it has 4 different groups attached. (-OR,-OH,-H and -R, where R is the carbon chain).
The hydroxyl group can be in any position (Above of below the ring), depending on with side the addition took place. (See attachment)
It is the carbon of the carbonyl in the open-chain form of the sugar, because it is the only one that can react with the Hydroxyls.