Answer:
C. 150
Step-by-step explanation:
It's right on Plato.
3738383792639263846736283
The answer to this is 8.6 repeating
Answer:
y = -9/10x + 3/10 or y = 3/10(1 - 3x)
Step-by-step explanation:
Perpendicular lines have slopes that are negative reciprocals of one another
so slope of line w is -9/10
Using (-3,3) >> y = -9/10x + b
3 = -9/10(-3) + b
3 = 27/10 + b
b = 3 - 27/10 = 30/10 - 27/10 = 3/10
y = -9/10x + 3/10 or y = 3/10(1 - 3x)
Answer:

Step-by-step explanation:
Given equation:

Cube root both sides:
![\implies \sqrt[3]{p^3}= \sqrt[3]{\dfrac{1}{8}}](https://tex.z-dn.net/?f=%5Cimplies%20%5Csqrt%5B3%5D%7Bp%5E3%7D%3D%20%5Csqrt%5B3%5D%7B%5Cdfrac%7B1%7D%7B8%7D%7D)
![\implies p= \sqrt[3]{\dfrac{1}{8}}](https://tex.z-dn.net/?f=%5Cimplies%20p%3D%20%5Csqrt%5B3%5D%7B%5Cdfrac%7B1%7D%7B8%7D%7D)
![\textsf{Apply exponent rule} \quad \sqrt[n]{a}=a^{\frac{1}{n}}:](https://tex.z-dn.net/?f=%5Ctextsf%7BApply%20exponent%20rule%7D%20%5Cquad%20%5Csqrt%5Bn%5D%7Ba%7D%3Da%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%3A)





Rewrite 8 as 2³:



Simplify:


