Answer:
The intersection is
.
The Problem:
What is the intersection point of
and
?
Step-by-step explanation:
To find the intersection of
and
, we will need to find when they have a common point; when their
and
are the same.
Let's start with setting the
's equal to find those
's for which the
's are the same.
![\log(x)=\frac{1}{2}\log(x+1)](https://tex.z-dn.net/?f=%5Clog%28x%29%3D%5Cfrac%7B1%7D%7B2%7D%5Clog%28x%2B1%29)
By power rule:
![\log(x)=\log((x+1)^\frac{1}{2})](https://tex.z-dn.net/?f=%5Clog%28x%29%3D%5Clog%28%28x%2B1%29%5E%5Cfrac%7B1%7D%7B2%7D%29)
Since
implies
:
![x=(x+1)^\frac{1}{2}](https://tex.z-dn.net/?f=x%3D%28x%2B1%29%5E%5Cfrac%7B1%7D%7B2%7D)
Squaring both sides to get rid of the fraction exponent:
![x^2=x+1](https://tex.z-dn.net/?f=x%5E2%3Dx%2B1)
This is a quadratic equation.
Subtract
on both sides:
![x^2-(x+1)=0](https://tex.z-dn.net/?f=x%5E2-%28x%2B1%29%3D0)
![x^2-x-1=0](https://tex.z-dn.net/?f=x%5E2-x-1%3D0)
Comparing this to
we see the following:
![a=1](https://tex.z-dn.net/?f=a%3D1)
![b=-1](https://tex.z-dn.net/?f=b%3D-1)
![c=-1](https://tex.z-dn.net/?f=c%3D-1)
Let's plug them into the quadratic formula:
![x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B-b%5Cpm%20%5Csqrt%7Bb%5E2-4ac%7D%7D%7B2a%7D)
![x=\frac{1 \pm \sqrt{(-1)^2-4(1)(-1)}}{2(1)}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B1%20%5Cpm%20%5Csqrt%7B%28-1%29%5E2-4%281%29%28-1%29%7D%7D%7B2%281%29%7D)
![x=\frac{1 \pm \sqrt{1+4}}{2}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B1%20%5Cpm%20%5Csqrt%7B1%2B4%7D%7D%7B2%7D)
![x=\frac{1 \pm \sqrt{5}}{2}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B1%20%5Cpm%20%5Csqrt%7B5%7D%7D%7B2%7D)
So we have the solutions to the quadratic equation are:
or
.
The second solution definitely gives at least one of the logarithm equation problems.
Example:
has problems when
and so the second solution is a problem.
So the
where the equations intersect is at
.
Let's find the
-coordinate.
You may use either equation.
I choose
.
![y=\log(\frac{1+\sqrt{5}}{2})](https://tex.z-dn.net/?f=y%3D%5Clog%28%5Cfrac%7B1%2B%5Csqrt%7B5%7D%7D%7B2%7D%29)
The intersection is
.
![\large\underline{\sf{Solution-}}](https://tex.z-dn.net/?f=%5Clarge%5Cunderline%7B%5Csf%7BSolution-%7D%7D)
We have to find out the value of the fraction.
<u>Let us assume that:</u>
![\sf \longmapsto x =2 + \dfrac{1}{2 + \dfrac{1}{2 + \dfrac{1}{2 + ... \infty} } }](https://tex.z-dn.net/?f=%20%5Csf%20%5Clongmapsto%20x%20%3D2%20%2B%20%20%20%5Cdfrac%7B1%7D%7B2%20%2B%20%20%5Cdfrac%7B1%7D%7B2%20%2B%20%20%5Cdfrac%7B1%7D%7B2%20%2B%20...%20%5Cinfty%7D%20%7D%20%7D%20)
<u>We can also write it as:</u>
![\sf \longmapsto x =2 + \dfrac{1}{x}](https://tex.z-dn.net/?f=%20%5Csf%20%5Clongmapsto%20x%20%3D2%20%2B%20%5Cdfrac%7B1%7D%7Bx%7D%20)
![\sf \longmapsto x =\dfrac{2x + 1}{x}](https://tex.z-dn.net/?f=%20%5Csf%20%5Clongmapsto%20x%20%3D%5Cdfrac%7B2x%20%2B%201%7D%7Bx%7D%20)
![\sf \longmapsto {x}^{2} =2x + 1](https://tex.z-dn.net/?f=%20%5Csf%20%5Clongmapsto%20%20%7Bx%7D%5E%7B2%7D%20%20%3D2x%20%2B%201)
![\sf \longmapsto {x}^{2} - 2x - 1 = 0](https://tex.z-dn.net/?f=%20%5Csf%20%5Clongmapsto%20%7Bx%7D%5E%7B2%7D%20%20-%202x%20-%201%20%3D%200)
<u>Comparing </u>the given <u>equation</u> with <u>ax² + bx + c = 0,</u> we get:
![\sf \longmapsto\begin{cases} \sf a =1 \\ \sf b = - 2 \\ \sf c = - 1 \end{cases}](https://tex.z-dn.net/?f=%20%5Csf%20%5Clongmapsto%5Cbegin%7Bcases%7D%20%5Csf%20a%20%3D1%20%5C%5C%20%5Csf%20b%20%3D%20%20-%202%20%5C%5C%20%5Csf%20c%20%3D%20%20-%201%20%5Cend%7Bcases%7D)
<u>By quadratic formula:</u>
![\sf \longmapsto x = \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}](https://tex.z-dn.net/?f=%20%5Csf%20%5Clongmapsto%20x%20%3D%20%20%5Cdfrac%7B%20-%20b%20%5Cpm%20%5Csqrt%7B%20%7Bb%7D%5E%7B2%7D%20-%204ac%20%7D%20%7D%7B2a%7D%20)
![\sf \longmapsto x = \dfrac{2 \pm \sqrt{ {( - 2)}^{2} - 4(1)( - 1)} }{2 \times 1}](https://tex.z-dn.net/?f=%20%5Csf%20%5Clongmapsto%20x%20%3D%20%20%5Cdfrac%7B2%20%5Cpm%20%5Csqrt%7B%20%7B%28%20-%202%29%7D%5E%7B2%7D%20-%204%281%29%28%20-%201%29%7D%20%7D%7B2%20%5Ctimes%201%7D%20)
![\sf \longmapsto x = \dfrac{2 \pm \sqrt{4 + 4} }{2 \times 1}](https://tex.z-dn.net/?f=%20%5Csf%20%5Clongmapsto%20x%20%3D%20%20%5Cdfrac%7B2%20%5Cpm%20%5Csqrt%7B4%20%2B%204%7D%20%7D%7B2%20%5Ctimes%201%7D%20)
![\sf \longmapsto x = \dfrac{2 \pm \sqrt{8} }{2}](https://tex.z-dn.net/?f=%20%5Csf%20%5Clongmapsto%20x%20%3D%20%20%5Cdfrac%7B2%20%5Cpm%20%5Csqrt%7B8%7D%20%7D%7B2%7D%20)
![\sf \longmapsto x = \dfrac{2 \pm2 \sqrt{2} }{2}](https://tex.z-dn.net/?f=%20%5Csf%20%5Clongmapsto%20x%20%3D%20%20%5Cdfrac%7B2%20%5Cpm2%20%5Csqrt%7B2%7D%20%7D%7B2%7D%20)
![\sf \longmapsto x = 1 \pm\sqrt{2}](https://tex.z-dn.net/?f=%20%5Csf%20%5Clongmapsto%20x%20%3D%201%20%5Cpm%5Csqrt%7B2%7D)
![\sf \longmapsto x = \begin{cases} \sf 1 + \sqrt{2} \\ \sf 1 - \sqrt{2} \end{cases}](https://tex.z-dn.net/?f=%20%5Csf%20%5Clongmapsto%20x%20%3D%20%5Cbegin%7Bcases%7D%20%5Csf%201%20%20%2B%20%5Csqrt%7B2%7D%20%5C%5C%20%5Csf%201%20-%20%20%5Csqrt%7B2%7D%20%20%5Cend%7Bcases%7D)
<u>But </u><u>"</u><u>x"</u><u> cannot be negative. Therefore:</u>
![\sf :\implies x = 1 + \sqrt{2}](https://tex.z-dn.net/?f=%20%5Csf%20%3A%5Cimplies%20x%20%3D%201%20%2B%20%5Csqrt%7B2%7D)
So, the value of the fraction is 1 + √2.
Since 111 is greater than 33, I will assume that you meant 11 votes for a candidate. Also, assuming that each student can vote only once, the answer would be
11/33 x 100=33.333333...
About 33.333 of the voters voted for candidate a.
Answer:
3) 162 ft² || 4) 38.25 mm²
Step-by-step explanation:
3)
area of triangle = 0.5 * base * height
= 0.5 * 27 * 12
= 162 ft²
4) area of triangle = 0.5 * base * height
= 0.5 * 8.5 * 9
= 38.25 mm²
Step-by-step explanation:
slope another name for gradient