1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maxonik [38]
3 years ago
15

In the months leading up to an election, news organizations conduct many surveys to help predict the results of the election. Of

ten news organizations will increase the sample size in the last few weeks before the election. Which of the following is the primary reason they increase the sample size?
A. A larger sample size gives a narrower confidence interval.
B. A larger sample size allows more people to give their input.
C. A larger sample size gives a higher confidence level.
D. A larger sample size means the sampling method isn’t as important.
Mathematics
1 answer:
lukranit [14]3 years ago
8 0

Answer:

A. A larger sample size gives a narrower confidence interval.

Step-by-step explanation:

In a sample with a number n of people surveyed with a probability of a success of \pi, and a confidence level of 1-\alpha, we have the following confidence interval of proportions.

\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}

In which

z is the zscore that has a pvalue of 1 - \frac{\alpha}{2}.

The margin of error is given by:

M = z\sqrt{\frac{\pi(1-\pi)}{n}}

As the sample size increases(n increases), the margin of error decreases, given a narrower, more precise confidence interval.

So the correct answer is:

A. A larger sample size gives a narrower confidence interval.

You might be interested in
The factorization of x2 + 3x - 4 is modeled with algebra
Sergeu [11.5K]

Answer:

C is correct answer

Step-by-step explanation:

x² + 3x -4

x²+4x-1x -4

x(x+4) -1( x+4)

(x-1)(x+4)

7 0
4 years ago
A baseball team is in second place with a win to loss ratio of .535. What percent of the games played did the team win?
larisa86 [58]

0.535 = 53.5 % wins

answer: 53.5 %

4 0
3 years ago
Find the maximum volume of a rectangular box that is inscribed in a sphere of radius r.
zvonat [6]

Answer:

The maximum volume of a box inscribed in a sphere of radius r is a cube with volume \frac{8r^3}{3\sqrt{3}}.

Step-by-step explanation:

This is an optimization problem; that means that given the constraints on the problem, the answer must be found without assuming any shape of the box. That feat is made through the power of derivatives, in which all possible shapes are analyzed in its equation and the biggest -or smallest, given the case- answer is obtained. Now, 'common sense' tells us that the shape that can contain more volume is a symmetrical one, that is, a cube. In this case common sense is correct, and the assumption can save lots of calculations, however, mathematics has also shown us that sometimes 'common sense' fails us and the answer can be quite unintuitive. Therefore, it is best not to assume any shape, and that's how it will be solved here.

The first step of solving a mathematics problem (after understanding the problem, of course) is to write down the known information and variables, and make a picture if possible.

The equation of a sphere of radius r is x^2 + y^2 + z^2=r^2. Where x, y and z are the distances from the center of the sphere to any of its points in the border. Notice that this is the three-dimensional version of Pythagoras' theorem, and it means that a sphere is the collection of coordinates in which the equation holds for a given radius, and that you can treat this spherical problem in cartesian coordinates.

A box that touches its corners with the sphere with arbitrary side lenghts is drawn, and the distances from the center of the sphere -which is also the center of the box- to each cartesian axis are named x, y and z; then, the complete sides of the box are measured  2x,  2y and 2z. The volume V of any rectangular box is given by the product of its sides, that is, V=2x\cdot 2y\cdot 2z=8xyz.

Those are the two equations that bound the problem. The idea is to optimize V in terms of r, therefore the radius of the sphere must be introduced into the equation of the volumen of the box so that both variables are correlated. From the equation of the sphere one of the variables is isolated: z^2=r^2-x^2 - y^2\quad \Rightarrow z= \sqrt{r^2-x^2 - y^2}, so it can be replaced into the other: V=8xy\sqrt{r^2-x^2 - y^2}.

But there are still two coordinate variables that are not fixed and cannot be replaced or assumed. This is the point in which optimization kicks in through derivatives. In this case, we have a cube in which every cartesian coordinate is independent from each other, so a partial derivative is applied to each coordinate independently, and then the answer from both coordiantes is merged into a single equation and it will hopefully solve the problem.

The x coordinate is treated first: \frac{\partial V}{\partial x} =\frac{\partial 8xy\sqrt{r^2-x^2 - y^2}}{\partial x}, in a partial derivative the other variable(s) is(are) treated as constant(s), therefore the product rule is applied: \frac{\partial V}{\partial x} = 8y\sqrt{r^2-x^2 - y^2}  + 8xy \frac{(r^2-x^2 - y^2)^{-1/2}}{2} (-2x) (careful with the chain rule) and now the expression is reorganized so that a common denominator is found \frac{\partial V)}{\partial x} = \frac{8y(r^2-x^2 - y^2)}{\sqrt{r^2-x^2 - y^2}}  - \frac{8x^2y }{\sqrt{r^2-x^2 - y^2}} = \frac{8y(r^2-2x^2 - y^2)}{\sqrt{r^2-x^2 - y^2}}.

Since it cannot be simplified any further it is left like that and it is proceed to optimize the other variable, the coordinate y. The process is symmetrical due to the equivalence of both terms in the volume equation. Thus, \frac{\partial V}{\partial y} = \frac{8x(r^2-x^2 - 2y^2)}{\sqrt{r^2-x^2 - y^2}}.

The final step is to set both partial derivatives equal to zero, and that represents the value for x and y which sets the volume V to its maximum possible value.

\frac{\partial V}{\partial x} = \frac{8y(r^2-2x^2 - y^2)}{\sqrt{r^2-x^2 - y^2}} =0 \quad\Rightarrow r^2-2x^2 - y^2=0 so that the non-trivial answer is selected, then r^2=2x^2+ y^2. Similarly, from the other variable it is obtained that r^2=x^2+2 y^2. The last equation is multiplied by two and then it is substracted from the first, r^2=3 y^2\therefore y=\frac{r}{\sqrt{3}}. Similarly, x=\frac{r}{\sqrt{3}}.

Steps must be retraced to the volume equation V=8xy\sqrt{r^2-x^2 - y^2}=8\frac{r}{\sqrt{3}}\frac{r}{\sqrt{3}}\sqrt{r^2-\left(\frac{r}{\sqrt{3}}\right)^2 - \left(\frac{r}{\sqrt{3}}\right)^2}=8\frac{r^2}{3}\sqrt{r^2-\frac{r^2}{3} - \frac{r^2}{3}} =8\frac{r^2}{3}\sqrt{\frac{r^2}{3}}=8\frac{r^3}{3\sqrt{3}}.

6 0
3 years ago
What is the measure of angle 2 in degrees?
earnstyle [38]

Answer:

The measure of angle 2 is... 60 degrees.

Angle 1 - 93 degrees

Angle 2 - 60 degrees

Angle 3 - 27 degrees

8 0
3 years ago
Can some one help me on this
Vilka [71]
28 divided by 4 = 7
so do 7 * 5 which is 35 so they make 35 cookies in 5 seconds
4 0
2 years ago
Other questions:
  • Sixteen is what percent of eighty?
    11·2 answers
  • What is the factored form of x^2+1 using imaginary numbers
    8·1 answer
  • Please help with this​
    7·2 answers
  • What's bigger 0.60 or 0.600
    13·2 answers
  • Solve for a.<br><br> a+0.3=−2
    14·2 answers
  • B) Write 25 x 10° in standard form.
    12·2 answers
  • the student council set a goal of raising at least $500 in flower sales. so far it has raised $415 .write an inequality to show
    7·2 answers
  • A rectangular tank is 39feet long, 25 feet wide 18 feet high there is 11 feet of water in the tank if a valve is open at the bot
    15·1 answer
  • How does this problem works?
    12·1 answer
  • You deposit $5,500 into a saving account that pays an annual interest rate of 5.5% compounded monthly.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!