Answer:
C the 12th root of (8^x)
Step-by-step explanation:
This becomes 8 ^ x/4 ^ 1/3
We know that a^b^c = a^ (c*c)
8 ^(x/12)
How many triangles can<span> you </span>construct<span> given three </span>angle<span> measures whose sum is 180°? The sum of the</span>angle<span> measures of any </span>triangle<span> is 180°. You </span>can<span> use a protractor to </span>construct<span> a </span>triangle<span> given three</span>angle<span> measures. </span>90 90<span>. </span>80<span> 100. 70 110. 60. 120. 50. 130. 40. 140. 30. 150. 20. 160. </span>10. 170. 0. 180. 100.80<span>. 110 70. 12.</span>
Answer:
Yes
Step-by-step explanation:
You can conclude that ΔGHI is congruent to ΔKJI, because you can see/interpret that there all the angles are congruent with one another, like with vertical angles (∠GIH and ∠KIJ) and alternate interior angles (∠H and ∠J, ∠G and ∠K).
We also know that we have two congruent sides, since it provides the information that line GK bisects line HJ, meaning that they have been split evenly (they have been split, with even/same lengths).
<u><em>So now we have three congruent angles, and two congruent sides. This is enough to prove that ΔGHI is congruent to ΔKJI,</em></u>
<u><em /></u>