Answer:
3.843
Step-by-step explanation:
(3x1)= 1
(8x1/10= 0.8
(4x1/100)=0.04
(3x1/1000)=0.003
Then, add together to get 3.843.
Answer:
The sample size to obtain the desired margin of error is 160.
Step-by-step explanation:
The Margin of Error is given as

Rearranging this equation in terms of n gives
![n=\left[z_{crit}\times \dfrac{\sigma}{M}\right]^2](https://tex.z-dn.net/?f=n%3D%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B%5Csigma%7D%7BM%7D%5Cright%5D%5E2)
Now the Margin of Error is reduced by 2 so the new M_2 is given as M/2 so the value of n_2 is calculated as
![n_2=\left[z_{crit}\times \dfrac{\sigma}{M_2}\right]^2\\n_2=\left[z_{crit}\times \dfrac{\sigma}{M/2}\right]^2\\n_2=\left[z_{crit}\times \dfrac{2\sigma}{M}\right]^2\\n_2=2^2\left[z_{crit}\times \dfrac{\sigma}{M}\right]^2\\n_2=4\left[z_{crit}\times \dfrac{\sigma}{M}\right]^2\\n_2=4n](https://tex.z-dn.net/?f=n_2%3D%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B%5Csigma%7D%7BM_2%7D%5Cright%5D%5E2%5C%5Cn_2%3D%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B%5Csigma%7D%7BM%2F2%7D%5Cright%5D%5E2%5C%5Cn_2%3D%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B2%5Csigma%7D%7BM%7D%5Cright%5D%5E2%5C%5Cn_2%3D2%5E2%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B%5Csigma%7D%7BM%7D%5Cright%5D%5E2%5C%5Cn_2%3D4%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B%5Csigma%7D%7BM%7D%5Cright%5D%5E2%5C%5Cn_2%3D4n)
As n is given as 40 so the new sample size is given as

So the sample size to obtain the desired margin of error is 160.
Answer:
y = -1/3x + 5
Step-by-step explanation:
y = mx + b
so y = 3, x = 6, m = -1/3
then 3 = (-1/3)6 + b
3 = -2 + b
b = 5
so y = -1/3x + 5
Answer:

Step-by-step explanation:
Hello!
Use the distributive property and multiply like terms.
<h3>Simplify</h3>
The simplified form is
.