Answer:
<h2>download the app photomath and right your solution </h2>
Solution :
Given :
Sample mean, 
Sample size, n = 129
Sample standard deviation, s = 8.2
a. Since the population standard deviation is unknown, therefore, we use the t-distribution.
b. Now for 95% confidence level,
α = 0.05, α/2 = 0.025
From the t tables, T.INV.2T(α, degree of freedom), we find the t value as
t =T.INV.2T(0.05, 128) = 2.34
Taking the positive value of t, we get
Confidence interval is ,


(32.52, 35.8)
95% confidence interval is (32.52, 35.8)
So with
confidence of the population of the mean number of the pounds per person per week is between 32.52 pounds and 35.8 pounds.
c. About
of confidence intervals which contains the true population of mean number of the pounds of the trash that is generated per person per week and about
that doe not contain the true population of mean number of the pounds of trashes generated by per person per week.
Answer:
(x, y) = (2, 5)
Step-by-step explanation:
I find it easier to solve equations like this by solving for x' = 1/x and y' = 1/y. The equations then become ...
3x' -y' = 13/10
x' +2y' = 9/10
Adding twice the first equation to the second, we get ...
2(3x' -y') +(x' +2y') = 2(13/10) +(9/10)
7x' = 35/10 . . . . . . simplify
x' = 5/10 = 1/2 . . . . divide by 7
Using the first equation to find y', we have ...
y' = 3x' -13/10 = 3(5/10) -13/10 = 2/10 = 1/5
So, the solution is ...
x = 1/x' = 1/(1/2) = 2
y = 1/y' = 1/(1/5) = 5
(x, y) = (2, 5)
_____
The attached graph shows the original equations. There are two points of intersection of the curves, one at (0, 0). Of course, both equations are undefined at that point, so each graph will have a "hole" there.
44 pounds
gonna type so i can post this because of the 20 character limit :P