Electric potential energy is defined as Ep=Q*V where Q is the magnitude of the charge and V is the potential difference. So when a charge moves between the points that have a potential difference, it's energy changes.
In our case:
Q=2e=2*(-1.6*10^-19) C
V=75 V
Ep=(-3.2*10^-19)*75
Ep=-2.4*10^-17 J
The change in potential energy of the charge is -2.4*10^-17 J
Answer:
the car is going to same sped !
Explanation:
I just now luv
Answer:
inelastic, since the girl moves in the same direction as the thrown ball
Explanation:
yess this ok
UwU
How much work in J does the string do on the boy if the boy stands still?
<span>answer: None. The equation for work is W = force x distance. Since the boy isn't moving, the distance is zero. Anything times zero is zero </span>
<span>--------------------------------------... </span>
<span>How much work does the string do on the boy if the boy walks a horizontal distance of 11m away from the kite? </span>
<span>answer: might be a trick question since his direction away from the kite and his velocity weren't noted. Perhaps he just set the string down and walked away 11m from the kite. If he did this, it is the same as the first one...no work was done by the sting on the boy. </span>
<span>If he did walk backwards with no velocity indicated, and held the string and it stayed at 30 deg the answer would be: </span>
<span>4.5N + (boys negative acceleration * mass) = total force1 </span>
<span>work = total force1 x 11 meters </span>
<span>--------------------------------------... </span>
<span>How much work does the string do on the boy if the boy walks a horizontal distance of 11m toward the kite? </span>
<span>answer: same as above only reversed: </span>
<span>4.5N - (boys negative acceleration * mass) = total force2 </span>
<span>work = total force2 x 11 meters</span>
The acceleration formula goes like this: a= (vf-vi)/t so it would be (13-4)/3 Thus the answer is 3m/s^2