Answer:D.no of the above
Explanation:get right with Christ
10 kilograms of mass weighs 98.1 newtons on Earth,
16.2 newtons on the Moon, 37.1 newtons on Mars,
and other weights in other places.
Answer:
The minumum speed the pail must have at its highest point if no water is to spill from it
= 2.64 m/s
Explanation:
Working with the forces acting on the water in the pail at any point.
The weight of water is always directed downwards.
The normal force exerted on the water by the pail is always directed towards the centre of the circle of the circular motion.
And the centripetal force, which keeps the system in its circular motion, is the net force as a result of those two previously mentioned force.
At the highest point of the motion, the top of the vertical circle, the weight and the normal force on the water are both directed downwards.
Net force = W + (normal force)
But the speed of this motion can be lowered enough to a point where the normal force becomes zero at the moment the pail reaches the highest point of its motion. Any speed lower than this value would result in the water spilling out of the pail. The water would not be able to resist the force of gravity.
At this point of minimum velocity,
Normal force = 0
Net force = W
Net force = centripetal force = (mv²/r)
W = mg
(mv²/r) = mg
r = 0.710 m
g = 9.8 m/s²
v² = gr = 9.8 × 0.71 = 6.958
v = √(6.958) = 2.64 m/s
Hope this Helps!!!
Answer:
77J
Explanation:
Not really an explanation to this, I just had this lesson last year and remembered it.
Hope I helped! ☺
In a string of length L, the wavelength of the n-th harmonic of the standing wave produced in the string is given by:

The length of the string in this problem is L=3.5 m, therefore the wavelength of the 1st harmonic of the standing wave is:

The wavelength of the 2nd harmonic is:

The wavelength of the 4th harmonic is:

It is not possible to find any integer n such that
, therefore the correct options are A, B and D.