Answer:
The correct option is: Total energy
Explanation:
The Hamiltonian operator, in quantum mechanics, is an operator that is associated with the<u> total energy of the system.</u> It is equal to the sum of the total kinetic energy and the potential energy of all the particles of the system.
The Hamiltonian operator was named after the Irish mathematician, William Rowan Hamiltonis denoted and is denoted by H.
Answer:
<u>Amplitude - remains the same</u>
<u>Frequency - increases</u>
<u>Period - decreases</u>
<u>Velocity - remains the same.</u>
<u />
Explanation:
The amplitude of the wave remains the same since you are not changing the distance your hand moves and the amplitude of the wave depends on how much distance your hand covers while moving.
The frequency of your wave increases since now you are moving your hand more number of times in the same period i.e. your hand is moving faster in one second. So, the frequency of your wave increases.
The period is the time taken by the wave to travel a certain distance. Since your hand is now moving faster, the wave will travel faster and will take less time to cover the same distance hence, we can say that its period will decrease.
The velocity of a wave depends on the medium in which it is travelling. Your wave was previously travelling in air and the new wave is also travelling in the same medium so the velocity of the wave remains unchanged.
Answer:
5.5g of ice melts when a 50g chunk of iron at 80°C is dropped into a cavity
Explanation:
The concept to solve this problem is given by Energy Transferred, the equation is given by,

Where,
Q= Energy transferred
m = mass of water
c = specific heat capacity
Temperature change (K or °C)
Replacing the values where mass is 50g and temperature is 80°C to 0°C we have,



Then we can calculate the heat absorbed by m grams of ice at 0°C, then

How Q_1=Q_2, so



Then 5.5g of ice melts when a 50g chunk of iron at 80°C is dropped into a cavity