Rate of change of velocity is acceleration
Answer:
Fx1 (6 m) sin 60 = 300 (3 m) cos 60 balancing torques about floor
Fx1 = 900 * 1/2 / 5.20 = 86.6 N this is the horizontal force that must be supplied by the wall to balance torques about the floor
This is also equal to the static force of friction that must be applied at the point of contact with the floor to balance forces in the x-direction.
Fx1 = Fx2 = 86.6 N
Answer:
1. v = 6.67 m/s
2. d = 9.54 m
Explanation:
1. To find the horizontal velocity of the rock we need to use the following equation:
<u>Where</u>:
d: is the distance traveled by the rock
t: is the time
The time can be calculated as follows:
<u>Where:</u>
g: is gravity = 9.8 m/s²
Now, the horizontal velocity of the rock is:
Hence, the initial velocity required to barely reach the edge of the shell below you is 6.67 m/s.
2. To calculate the distance at which the projectile will land, first, we need to find the time:

So, the distance is:
Therefore, the projectile will land at 9.54 m of the second cliff.
I hope it helps you!
Answer:
Energy expenditure in K cals/min = 10 K cals /min (approximately)
Explanation:
As we know
Energy expenditure in Kcal/min= METs x 3.5 x Body weight (kg) / 200
Given is METs=7.6
Weight of Jazz= 172lb=78.02kg
putting the values in formula,
Energy expenditure in K cals/min= 7.6 x 3.5 x 78.02 / 200
=10.38 K cals /min
=10 K cals /min (approximately)
Therefore, Energy expenditure in K cals/min by Jazz will be approximately 10 K cals /min