The energy carried by a single photon of frequency f is given by:

where

is the Planck constant. In our problem, the frequency of the photon is

, and by using these numbers we can find the energy of the photon:
My guess would be about 10 years because stars are hot balls of light that are reflections from years ago so it would most likely take awhile
Supposing that the spring is un stretched when θ = 0, and has a toughness of k = 60 N/m.It seems that the spring has a roller support on the left end. This would make the spring force direction always to the left
Sum moments about the pivot to zero.
10.0(9.81)[(2sinθ)/2] + 50 - 60(2sinθ)[2cosθ] = 0 98.1sinθ + 50 - (120)2sinθcosθ = 0 98.1sinθ + 50 - (120)sin(2θ) = 0
by iterative answer we discover that
θ ≈ 0.465 radians
θ ≈ 26.6º
The correct is Reverberation. A reverberation is created when a sound or signal is reflected causing a large number of reflections to build up and then decay as the sound is absorbed by the surfaces of objects in the space – which could include furniture, people, and air.
Answer: 1026s, 17.1m
Explanation:
Given
COP of heat pump = 3.15
Mass of air, m = 1500kg
Initial temperature, T1 = 7°C
Final temperature, T2 = 22°C
Power of the heat pump, W = 5kW
The amount of heat needed to increase temperature in the house,
Q = mcΔT
Q = 1500 * 0.718 * (22 - 7)
Q = 1077 * 15
Q = 16155
Rate at which heat is supplied to the house is
Q' = COP * W
Q' = 3.15 * 5
Q' = 15.75
Time required to raise the temperature is
Δt = Q/Q'
Δt = 16155 / 15.75
Δt = 1025.7 s
Δt ~ 1026 s
Δt ~ 17.1 min