Explanation:
We'll call the radius r and the diameter d:
We also assume that the riders are at a distance r = d/2 = 7m from the center of the wheel.
The period of the wheel is 24s. The tangent velocity of the wheel (and the riders) will be: (2pi/T)*r = 0.8 m/s (circa).
It means that in 3 minutes (180 seconds) they'll run 0.8 m/s * 180s = 144m.
Hopefully I understood the question. If yes, that's the answer.
Answer:
16.7 s
Explanation:
T= <u>Vf - Vo</u> a= <u>F</u>
a m
4,500 / 3000 = 1.5 (a)
30 - 5 / 1.5(a) = 16.7 s
Answer:
The tangential velocity of a rotating object is:
v = r*w
where r is the radius, and w is the angular velocity.
w = 2*pi*f
where f is the frequency.
We know that the record plater does 11 revolutions in 20 seconds, then it does:
11 rev/20s = 0.55 rev/s = f
then we have:
w = 2*pi*0.55 s^-1 = 2*3.14*0.55 s^-1 = 3.454 s^-1
The radius of a record player is really variable, it is around 10 inches, so i will use r = 10in, which is the rotating part of the record player.
then the tangential velocity is:
v = 10in*3.454 s^-1 = 34.54 in/s