At point E
- the kinetic energy of the rollercoaster is small compared to the potential energy
- the potential energy is greater than the kinetic energy
- the total energy is a mixture of potential and kinetic energy
<h3>What is the energy of the roller coaster at point E?</h3>
The energy of a roller coaster could either be potential energy, kinetic energy or a combination of both potential and kinetic energy.
Using analogies, the energy of the roller coaster at point E can be compared to a falling fruit from a tree which falls onto a pavement and is the rolling towards the floor. Point E can be compared to the midpoint of the fall of the fruit.
At point E
- the kinetic energy of the rollercoaster is small compared to the potential energy
- the potential energy is greater than the kinetic energy
- the total energy is a mixture of potential and kinetic energy
In conclusion, the energy of the rollercoaster at E is both Kinetic and potential energy,
Learn more about potential and kinetic energy at: brainly.com/question/18963960
#SPJ1
The answer is A. locations by the ocean typically do not get as cold in the winter or as hot in the summer as locations that are located inland.
Answer: c. A person who gains unauthorized access to digital data
Explanation:
Answer:
1500 mph
Explanation:
Take east to be +x and north to be +y.
The x component of the velocity is:
vₓ = 889 cos 0° + 830 cos 59°
vₓ = 1316.5 mph
The y component of the velocity is:
vᵧ = 889 sin 0° + 830 sin 59°
vᵧ = 711.4 mph
The speed is found with Pythagorean theorem:
v² = vₓ² + vᵧ²
v² = (1316.5 mph)² + (711.4 mph)²
v = 1496 mph
Rounded to two significant figures, the jet's speed relative to the ground is 1500 mph.
Answer:
false : In distance time graph,time is shown on the x -axis