Answer
Given,
Energy absorbed, 
Energy expels,
Temperature of cold reservoir, T = 27°C
a) Efficiency of engine



b) Work done by the engine



c) Power output
t = 0.296 s



Answer:
Check the explanation
Explanation:
This is the step by step explanation to the above question:
![v_i = v [ f_L *(v - v_b) - f_s*(v + v_b)] / [f_L * (v - v_b) + f_s*(v +v_b)]](https://tex.z-dn.net/?f=v_i%20%3D%20v%20%5B%20f_L%20%2A%28v%20-%20v_b%29%20-%20f_s%2A%28v%20%2B%20v_b%29%5D%20%2F%20%5Bf_L%20%2A%20%28v%20-%20v_b%29%20%2B%20f_s%2A%28v%20%2Bv_b%29%5D)
= v * (83.1 * (v-4.3) - 80.7 ( v+4.3))/ [83.1 *(v - 4.3) + 80.7*(v + 4.3)]
v = 344 m/s
vi = 344 * ( 83.1* (344-4.3) - 80.7*(344+4.3) ) / (83.1 *(344 - 4.3) + 80.7*(344 + 4.3))
= 0.74 m/s
200g*1 mole/ 18g=11.1 moles There are 11.1 moles of water.
c) 101kPa
Hope I helped! ( Smiles )
Answer:
38.3 m/s
Explanation:
To find vertical component of initial velocity, you'd have to use sine ratio:

is vertical component of initial velocity and
is initial velocity given which is 50 m/s.
A stone is projected at an angle of 50 degrees so
= 50°. Substitute in the formula:

Therefore, the vertical component of initial velocity is approximately 38.3 m/s
(The picture is also attached for visual reference!)