Answer:
a) 23.89 < -25.84 Ω
b) 31.38 < 25.84 A
c) 0.9323 leading
Explanation:
A) Calculate the load Impedance
current on load side = 0.75 p.u
power factor angle = 25.84
= 0.75 < 25.84°
attached below is the remaining part of the solution
<u>B) Find the input current on the primary side in real units </u>
load current in primary = 31.38 < 25.84 A
<u>C) find the input power factor </u>
power factor = 0.9323 leading
<em></em>
<em>attached below is the detailed solution </em>
Answer:
Explanation:
Given that:
V = 12.5m/s
L= 2.70m
b= 0.65m


P = 1atm
Film temperature

dynamic viscosity =

density = 0.9946kg/m³
Pr = 0.708564
K= 229.7984 * 10⁻³w/mk
Reynolds number,


we have,

we have,
heat transfer rate from top plate

Answer:
It will be equivalent to 338.95 N-m
Explanation:
We have to convert 250 lb-ft to N-m
We know that 1 lb = 4.45 N
So foe converting from lb to N we have to multiply with 4.45
So 250 lb = 250×4.45 =125 N
And we know that 1 feet = 0.3048 meter
Now we have to convert 250 lb-ft to N-m
So 
So 250 lb-ft = 338.95 N-m
Answer:
the percent increase in the velocity of air is 25.65%
Explanation:
Hello!
The first thing we must consider to solve this problem is the continuity equation that states that the amount of mass flow that enters a system is the same as what should come out.
m1=m2
Now remember that mass flow is given by the product of density, cross-sectional area and velocity
(α1)(V1)(A1)=(α2)(V2)(A2)
where
α=density
V=velocity
A=area
Now we can assume that the input and output areas are equal
(α1)(V1)=(α2)(V2)

Now we can use the equation that defines the percentage of increase, in this case for speed

Now we use the equation obtained in the previous step, and replace values

the percent increase in the velocity of air is 25.65%