Answer:
hope this helps
Explanation:
Photosynthesis
Photosynthesis
Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's metabolic activities. This chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water – hence the name photosynthesis, from the Greek phos, "light", and sunthesis "putting together". In most cases, oxygen is also released as a waste product. Most plants, algae, and cyanobacteria perform photosynthesis; such organisms are called photoautotrophs. Photosynthesis is largely responsible for producing and maintaining the oxygen content of the Earth's atmosphere, and supplies most of the energy necessary for life on Earth.
Answer:
0.209 mol/L
Explanation:
Given data
- Mass of copper(lI) sulfate (solute): 11.7 g
- Volume of solution: 350 mL = 0.350 L
The molar mass of copper(Il) sulfate is 159.61 g/mol. The moles corresponding to 11.7 grams are:
11.7 g × (1 mol/159.61 g) = 0.0733 mol
The molarity of copper(Il) sulfate is:
M = moles of solute / liters of solution
M = 0.0733 mol / 0.350 L
M = 0.209 mol/L
Answer:
Volume = 72.7272
Explanation:
if only pressure and volume change, then we can do some simple math to find the answer.
2 x 10 ^ 6 times 1 x 10 ^-5 = 20
pressure and volume must equal 20
20 = 0.275 x volume
20 / 0.275 = new volume
I don't remember significant digits but your volume is 72.72727272 just repeated
Answer:
0.74 grams of methane
Explanation:
The balanced equation of the combustion reaction of methane with oxygen is:
it is clear that 1 mol of CH₄ reacts with 2 mol of O₂.
firstly, we need to calculate the number of moles of both
for CH₄:
number of moles = mass / molar mass = (3.00 g) / (16.00 g/mol) = 0.1875 mol.
for O₂:
number of moles = mass / molar mass = (9.00 g) / (32.00 g/mol) = 0.2812 mol.
- it is clear that O₂ is the limiting reactant and methane will leftover.
using cross multiplication
1 mol of CH₄ needs → 2 mol of O₂
??? mol of CH₄ needs → 0.2812 mol of O₂
∴ the number of mol of CH₄ needed = (0.2812 * 1) / 2 = 0.1406 mol
so 0.14 mol will react and the remaining CH₄
mol of CH₄ left over = 0.1875 -0.1406 = 0.0469 mol
now we convert moles into grams
mass of CH₄ left over = no. of mol of CH₄ left over * molar mass
= 0.0469 mol * 16 g/mol = 0.7504 g
So, the right choice is 0.74 grams of methane