Each element or compound has a molar mass, which is calculated by multiplying the atomic mass of each element by the amount of atoms of that element, and summing the results of each element. The molar mass is measured in g/mol. So you divide the mass in grams by the molar mass to get the amount of moles.
Example:
There are 5g of water.
Calculate the amount of moles.
The water's formula is H2O, so the molar mass of it is

g/mol.
The amount of moles is:
5g ÷ 18g/mol ~ 0.28mol
Answer:
The net ionic equation is as follows:
HCN(aq) + OH-(aq) ----> H20(l) + CN-(aq)
Explanation:
The reaction between Hydrocyanic acid, HCN, and sodium hydroxide is a neutralization reaction between a weak acid and a strong base.
Hydrocyanic acid being a weak acid ionizes only slightly, while sodium hydroxide being a strong base ionizes completely. The equation for the reaction is given below:
A. HCN(aq) + NaOH-(aq) ----> NaCN(aq) + H2O(l)
Since Hydrocyanic acid is written in the aqueous form as it ionizes only slightly and the ionic equation is given below:
HCN(aq) + Na+(aq)+OH-(aq) ----> Na+(aq)+CN-(aq) + H2O(l)
Na+ being a spectator ion is removed from the net ionic equation given below:
HCN(aq) + OH-(aq) ----> H20(l) + CN-(aq)
It knows that when water evaporates, it carries heat energy away with it.
So your body puts some water out on your skin, and hopes that it will
evaporate. We call that "perspiring" or "sweating".
Answer: The molar mass of magnesium nitrate is 148.3148 g/mol.
Explanation:
The most electronegative element will have atoms with strongest association for electrons. Electronegativity is the ability of an atom to attract electrons and form bonds with electrons. . In the periodic table the left hand side favors the loss of electrons because less energy is required to lose an electron than to gain an electron. On the other han, the right hand side favors gaining electrons since less energy is required than when losing electrons.
Henceforth, from left to right in the periodic table the tendency to gain electrons increases. In contrast, going down a group there is decreased association for electrons, because atomic radius increases which suggests that valence electrons are further away from the nucleus.This makes fluoride the ion with strongest association of electrons. The noble gases have a complete shell so cannot attract electrons to themselves, which means they have no electronegativity.