Answer:
Explanation:
We Often solve the the integral neutron transport equation using the collision probability (CP) method which usually requires flat flux (FF) approach. In this research, it has been carried out in the cylindrical nuclear fuel cell with the spatial of mesh with quadratic flux approach. This simply means that the neutron flux at any region of the nuclear fuel cell is forced to follow the pattern of a quadratic function.
Furthermore The mechanism may be referred to as the process of non-flat flux (NFF) approach. The parameters that calculated in this study are the k-eff and the distribution of neutron flux. The result shows that all parameters are in accordance with the result of SRAC.
Inertia is directly proportional to mass.
What is Walter Lewin famous for?
Walter Hendrik Gustav Lewin (born January 29, 1936) is a Dutch astrophysicist and former professor of physics at the Massachusetts Institute of Technology.
Lewin earned his doctorate in nuclear physics in 1965 at the Delft University of Technology and was a member of MIT's physics faculty for 43 years beginning in 1966 until his retirement in 2009.
According to Walter Levin,
The concept of moment of inertia is demonstrated by rolling a series of cylinders down an inclined plane.
Inertia is the resistance of any physical object to a change in its velocity. This includes changes to the object's speed, or direction of motion. An aspect of this property is the tendency of objects to keep moving in a straight line at a constant speed when no forces act upon them.
By rolling a series of cylinders down on an inclined plane , he demonstrated that a cylinder have a smooth friction.
He compares the rolling cylinder by using hollow cylinder and a heavy cylinder , and finalize the result that a hollow cylinder moves slowly but the heavy cylinder move faster.
Hence , By doing this experiment he explained about the inertia that Inertia depend on the mass of the object. As the heavy the object it will take more time to travel or move.
Learn more about inertia here:brainly.com/question/3268780
#SPJ1
Ng seismic and translational waves we get the law of michio kaku.
Answer:
<u><em>Rate of dissolving compounds:</em></u>
If we increase the temperature of the solution, then the dissolving compound would dissolve more easily.
<u><em>Boiling Point of Compounds:</em></u>
If the inter-molecular forces of any compound is really strong, then the boiling point of the compound would be really high.
Your answer is c steam because steam is a gas...