I believe the answer is option A
Answer:
275 kPa
Explanation:
mass of the gas=m=1.5 kg
initial volume if the gas=V₁=0.04 m³
initial pressure of the gas= P₁=550 kPa
as the condition is given final volume is double the initial volume
V₂=final volume
V₂=2 V₁
As the temperature is constant
T₁=T₂=T
=
putting the values in the equation.
=
P₂=
P₂=
P₂=275 kPa
So the final pressure of the gas is 275 kPa.
We will convert the 1dm3 in terms of cm3 as follows:
1dm^3 = (10 cm)^3
= 1000 cm^3
The mass of platinum is equal to 900 lb.
Then we will convert the mass in terms of grams as follows:
1 lb = 453.6 g
900 = 900 x 453.6 g
= 408240 g
Then density of platinum is equal to 21.4 g/cm^3
We will calculate the volume of platinum in mass 408240 g as follows:
Volume of platinum = mass of platinum / density of platinum
= 408240 g / 21.4 g/cm^3
= 19076.6 cm^3
The total volume of platinum is 19076.6 cm^3
The volume of platinum in 1 L bar is 1000cm^3
So, to calculate the number of bars we will use the formula as follows;
Number of bars = volume of platinum available / volume of platinum required in 1 L bar
= 19076.6 cm^3 / 1000 cm^3
= 19
So, the number of bars are 19.
Answer:
Explanation:
Given
Charge per unit area on each plate(
)=
Plate separation(y)=0.013 m
and velocity is given by

where a=acceleration is given by

e=charge on electron
E=electric field
m=mass of electron


substituting values


