Answer:
The correct answer is
d. heating evaporative cooling and mineral transport
Explanation:
Plants transpire to expel excess heat energy by a process known as evaporative cooling. As the water involved in transpiration evaporates, heat energy is transferred from the plant system into the surrounding environment cooling down the plant.
During transpiration, the stomata of the plant are open allowing the outward flow of the evaporated water and also the open stomata enable the plant to absorb carbon dioxide (CO2) from the atmosphere. The carbon dioxide is required in photosynthesis for the formation glucose while producing oxygen as well.
The water also transports nutrients dissolved in it as it is being transported to the leafs for evaporation. These nutrients are thus delivered tm all parts of the plant.
Answer:
A. False
B True
C. False
D.False
E. True
F. False
G. False
H. False
I. True
Explanation:
A. False: The system being analyzed consists of the bug and the car. These are the two bodies involved in the collision.
B. True: The system being analyzed consists of the bug and the car
C. False: The magnitudes of the change in velocity are different from the car and the bug. The velocity of the bug changes from 0 to the velocity of the car, while there is no noticeable change in the velocity of the car
D.False: There is barely any change in the momentum of the car since the mass of the bug is very small.
E. True: Since the mass of the bug is small, and was initially at rest, the magnitude of the change in monentum will be large because the new velocity will be that of the car.
F. False: The system being analyzed consists of the bug and the car. Those are the two bodies involved in the collision
G. False: The car barely changes in velocity since the mass of the bug is small.
H. False: The car barely changes in momentum because the collision does not affect its speed so much. on the other hand the momentum change of the bug is large since its mass is small.
I. True: The bug which was initially at rest will begin moving with the velovity of the speeding car, while the car barely changes in its velocity
Answer:
F = 2.26 × 10⁻³ N
Explanation:
given,
length of rod = 11 cm
charge = 19 nC
linear charge density = 3.9 x 10⁻⁷ C/m
electric force at 2 cm away.

F = E q

integrating from 0.02 to 0.02 + L
![F= \dfrac{2K\lambda\ q}{L}[ln(0.02+L)-ln(0.002)]](https://tex.z-dn.net/?f=F%3D%20%5Cdfrac%7B2K%5Clambda%5C%20q%7D%7BL%7D%5Bln%280.02%2BL%29-ln%280.002%29%5D)
![F= \dfrac{2\times 9 \times 10^9\times 3.9\times 10^{-7}\times 19 \times 10^{-9}}{0.11}[ln(0.02+0.11)-ln(0.002)]](https://tex.z-dn.net/?f=F%3D%20%5Cdfrac%7B2%5Ctimes%209%20%5Ctimes%2010%5E9%5Ctimes%203.9%5Ctimes%2010%5E%7B-7%7D%5Ctimes%2019%20%5Ctimes%2010%5E%7B-9%7D%7D%7B0.11%7D%5Bln%280.02%2B0.11%29-ln%280.002%29%5D)
F = 2.26 × 10⁻³ N
Answer - corona, chromosphere, photosphere