Used mainly in the context of Geography a Constructive force is involved in making new land while a Destructive force breaks the land. As they are carrying opposite functions to one another they are considered as competing forces.
Answer:
c) No, because Celsius is not an absolute temperature scale
Explanation:
converting 5 oC to kelvin which is the absolute temperature scale gives = 273 + 5 = 278 K
and converting 20 oC to kelvin = 20 + 273 = 293 K
the ratio = 278 / 293 = 0.94 approx 1 not 4
Answer:
0.184 atm
Explanation:
The ideal gas equation is:
PV = nRT
Where<em> P</em> is the pressure, <em>V</em> is the volume, <em>n</em> is the number of moles, <em>R</em> the constant of the gases, and <em>T</em> the temperature.
So, the sample of N₂O₃ will only have its temperature doubled, with the same volume and the same number of moles. Temperature and pressure are directly related, so if one increases the other also increases, then the pressure must double to 0.092 atm.
The decomposition occurs:
N₂O₃(g) ⇄ NO₂(g) + NO(g)
So, 1 mol of N₂O₃ will produce 2 moles of the products (1 of each), the <em>n </em>will double. The volume and the temperature are now constants, and the pressure is directly proportional to the number of moles, so the pressure will double to 0.184 atm.
<h3>
Answer:</h3>
3.342 x 10^24 molecules of water
<h3>
Explanation:</h3>
Given;
Mass of water = 100.0 g
Required to determine the number of molecules in 100.0 g of water
Using Avogadro's constant
1 mole of a compound contains 6.022 × 10^22 molecules
Thus;
1 mole of H₂O contains 6.022 × 10^23 molecules
But;
1 mole = 18.02 g/mol
Therefore;
18.02 g of water contains 6.022 × 10^23 molecules
100.0 g of water will have;
= (100. 0 g ×6.022 × 10^23 molecules) ÷ 18.02
= 3.342 x 10^24 molecules