Answer:
3840000
Step-by-step explanation:
you need to multiply 20 times 60
times 80 times 40
Correlation coefficient (r) = [nΣxy - (Σx)(Σy)] / [sqrt(nΣx^2 - (Σx)^2)sqrt(nΣy^2 - (Σy)^2)]
Σx = 21 => (Σx)^2 = 21^2 = 441
Σy = 671 => (Σy)^2 = 671^2 = 450,241
Σx^2 = 1 + 4 + 9 + 16 + 25 + 36 = 91
Σy^2 = 98^2 + 101^2 + 109^2 + 117^2 + 119^2 + 127^2 = 75,665
Σxy = 1(98) + 2(101) + 3(109) + 4(117) + 5(119) + 6(127) = 2,452
r = [6(2,452) - 21(671)] / [sqrt(6(91) - 441)sqrt(6(75,665) - 450,241)] = 621/sqrt(105)sqrt(3749) = 0.99
option b is the correct answer.
Answer:
The function h(x) is increasing on the interval (5, ∞)
Step-by-step explanation:

Since we cannot take a square root of a negative number, the domain of this function is restricted to x ≥ 5
If the domain is restricted to x ≥ 5, then the function is always increasing,
since h(x) ≥ 0
Therefore:
The function h(x) is increasing on the interval (5, ∞)
Answer:
Hello
The answer is 30% increase in texts since last month.
IF you feel any problem in understanding , do comment pls.
Step-by-step explanation:
Let
X = last month sent texts
y = this month sent texts
First of all find the no. of increased texts,
by subtracting x from y
=> y-x= 7085- 5450
= 1635
We want to find these 15 texts % with respect to 5450 texts
i.e. 1635/X
=0.30
for answer in % multiply with 100
i.e. 30%
So we are given the system:

Written in matrix form we get:
![\left[\begin{array}{cc}2&4\\6&3\end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{c}8\\-3\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%264%5C%5C6%263%5Cend%7Barray%7D%5Cright%5D%20%0A%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%0A%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%5C%5C-3%5Cend%7Barray%7D%5Cright%5D%20)
We compute the solution like this:
![ \left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{cc}2&4\\6&3\end{array}\right] ^{-1} \left[\begin{array}{c}8\\-3\end{array}\right] \\= \left[\begin{array}{cc}-3&4\\6&-2\end{array}\right] \left[\begin{array}{c}8\\-3\end{array}\right] \dfrac{1}{18}\\= \left[\begin{array}{c}2\\-3\end{array}\right]](https://tex.z-dn.net/?f=%20%0A%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%0A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%264%5C%5C6%263%5Cend%7Barray%7D%5Cright%5D%20%5E%7B-1%7D%0A%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%5C%5C-3%5Cend%7Barray%7D%5Cright%5D%20%20%5C%5C%3D%0A%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-3%264%5C%5C6%26-2%5Cend%7Barray%7D%5Cright%5D%0A%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%5C%5C-3%5Cend%7Barray%7D%5Cright%5D%20%5Cdfrac%7B1%7D%7B18%7D%5C%5C%3D%0A%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%5C%5C-3%5Cend%7Barray%7D%5Cright%5D)
The solution is :