The mass of Ba(IO3)2 that can be dissolved in 500 ml of water at 25 degrees celcius is 2.82 g
<h3>What mass of Ba(IO3)2 can be dissolved in 500 ml of water at 25 degrees celcius?</h3>
The Ksp of Ba(IO3)2 = 1.57 × 10^-9
Molar mass of Ba(IO3)2 = 487 g/mol?
Dissociation of Ba(IO3)2 produces 3 moles of ions as follows:

![Ksp = [Ba^{2+}]*[IO_{3}^{-}]^{2}](https://tex.z-dn.net/?f=Ksp%20%3D%20%5BBa%5E%7B2%2B%7D%5D%2A%5BIO_%7B3%7D%5E%7B-%7D%5D%5E%7B2%7D)
![[Ba(IO_{3})_{2}] = \sqrt[3]{ksp} =\sqrt[3]{1.57 \times {10}^{ - 9} } \\ [Ba(IO_{3})_{2}] = 1.16 \times {10}^{-3} moldm^{-3}](https://tex.z-dn.net/?f=%5BBa%28IO_%7B3%7D%29_%7B2%7D%5D%20%3D%20%20%5Csqrt%5B3%5D%7Bksp%7D%20%3D%3C%2Fp%3E%3Cp%3E%5Csqrt%5B3%5D%7B1.57%20%5Ctimes%20%20%7B10%7D%5E%7B%20-%209%7D%20%7D%20%5C%5C%20%20%5BBa%28IO_%7B3%7D%29_%7B2%7D%5D%20%3D%201.16%20%5Ctimes%20%20%7B10%7D%5E%7B-3%7D%20moldm%5E%7B-3%7D)
moles of Ba(IO3)2 = 1.16 × 10^-3 × 0.5 = 0.58 × 10^-3 moles
mass of Ba(IO3)2 = 0.58 × 10^-3 moles × 487 = 2.82 g
Therefore, mass Ba(IO3)2 that can be dissolved in 500 ml of water at 25 degrees celcius is 2.82 g.
Learn more about mass and moles at: brainly.com/question/15374113
#SPJ12
Answer:
complex
Explanation:
becaause it fits in the words equation I hoped i helped
Answer:
See explanation below
Explanation:
In this case we have reaction of addition. In this case a diene reacting with an acid as HBr. This reaction is known as Hydrohalogenation, and, as we have a diene, this kind of reaction can be done as 1,4 addition. Which means that the reaction will be undergoing with an adition in the carbon 1, and carbon 4.
At room temperature we can expect that this reaction can be done in thermodynamic conditions, Now, as the problem states that is forming 4 products, we can expect products of a 1,2 addition too. This product can be formed if the reaction is taking place in the most stable carbocation, and then, by resonance, we can expect the 1,4 product too.
Now, the HBr can be attacked by the double bond of the first position, giving two possible products or by the double bond of the third position giving the other two products. These products are all possible, obviously the most stable will be the major of all of them, but the other three are perfectly possible. One product is formed without doing much, and the other by resonance. Same happens with the other double bond.
In the picture below, you have the mechanism for all the 4 products.
Hope this helps
W=m₁/m₀=2^(-t/T)
t=4.6·10⁹ years
T=5·10¹⁰ years
w=2^(-4.6·10⁹/5·10¹⁰)
w=0.9382
w=93.82%
In an exothermic reaction, the water will increase in temperature in a calorimeter. An exothermic reaction is a reaction where heat is one of the products or heat is being released from it which will cause for the temperature inside the calorimeter to increase.