1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KonstantinChe [14]
4 years ago
12

For the airfoil and conditions in Problem 2.2, calculate the lift-to-drag ratio. Comment on its magnitude.

Physics
1 answer:
raketka [301]4 years ago
8 0

Answer:

L/D= 112

Explanation:

Aerodynamics can be defined as the branch of dynamics which deals with the motion of air, their properties and the interaction between the air and solid bodies.

Aerodynamics law explains how an airplane is able to fly. There are four forces of flight, and they are; lift, weight, thrust and drag. The amount of lift generated by a wing divided by the aerodynamic drag is known as the lift to drag ratio.

Lift increases proportionally to the square of the speed.

The solutions to the question is the file attached to this explanation.

Lift,L= qC(l). S---------------------------(1).

and,

Drag,D = qC(d).S ----------------------(2).

Hence, Lift to drag ratio,L/D= C(l)/C(d).

Therefore, we have to compute various angle of attack.(check attached file)...

Then, (L/D) will then be equal to 112.

You might be interested in
Calculate the Poynting vector at the surface of the filament, associated with the static electric field producing the current an
Vesnalui [34]

We anticipate a constant Poynting vector of magnitude since the hot resistor will be emitting heat and none of the electric or magnetic fields will change over time.

S = P/A

  = I2R/ 2πrL

 = 332 kW/m2

Always pointing away from the wire, this Poynting vector.

<h3>What is the Poynting vector?</h3>

Describes the size and direction of the energy flow in electromagnetic waves using a Poynting vector. It bears the name of the 1884 invention of English physicist John Henry Poynting. It stands for the electromagnetic field's directional energy flux or power flow. The Poynting vector is significant in a static electromagnetic field because it determines the direction of energy flow in an electromagnetic field. This vector represents the radiation pressure of an electromagnetic wave and points in its direction of propagation.

To learn more about Poynting vector, visit:

<u>brainly.com/question/17330899</u>

#SPJ4

7 0
1 year ago
Consider a 2250-lb automobile clocked by law-enforcement radar at a speed of 85.5 mph (miles/hour). if the position of the car i
Korvikt [17]

As per law of Heisenberg uncertainty law

product of uncertainty in position and uncertainty in momentum will be constant

\Delta x . \Delta P = \frac{h}{4\pi}

\Delta x . m \Delta v = \frac{h}{4\pi}

now plug in all data

(5\times 0.3048). (2250 \times 0.454) \Delta v = \frac{6.6 \times 10^{-34}}{4\pi}

\Delta v = 3.37 \times 10^{-38} m/s

So above is the uncertainty in velocity of the object

4 0
3 years ago
Read 2 more answers
Is a switch essential for a circuit to operate
antiseptic1488 [7]

Answer:

yes it is essential

Explanation:

a switch is an electrical component that can disconnect or connect the conducting path in an electrical circuit; controls current flow into a circuit

4 0
3 years ago
8. How did the measured angular magnification of the telescope compare with the theoretical prediction?
Genrish500 [490]

Complete Question

The complete question is shown on the first uploaded image  

Answer:

The theoretical angular magnification lies within the angular magnification range

Explanation:

From the question we are told that

   The  focal length of  B  is  f_{objective } =  43.0 \ cm

    The focal length of  A  is   f_{eye} =  10.4 \  cm

The  theoretical angular  magnification is mathematically represented as

           m = \frac{f_{objective }}{f_{eye}}  =  \frac{43.0}{10.4}

            m = \frac{f_{objective }}{f_{eye}}  =  4.175

Form the question the measured angular magnification ranges from 4 -5

So from the value calculated and the value given we can deduce that the theoretical angular  magnification lies within the angular magnification range

3 0
3 years ago
If the Velocity of the body<br> is increased to 3v, determine the kinetic energy
Rom4ik [11]

ANSWER; KE=5mv^2 so it is proportional to v^2.

Explanation:So if you triple the velocity you are replacing v with 3v. Then you get (3v)^2=9v^2.

7 0
3 years ago
Other questions:
  • Which of these is a part of the biosphere? a. wind b. lakes c. bacteria d. glaciers
    7·2 answers
  • Find the potential energy of a 2kg ball 15m in the air
    9·1 answer
  • Martin has severe myopia, with a far point on only 17 cm. He wants to get glasses that he'll wear while using his computer whose
    11·1 answer
  • Which statement accurately describes a balanced force?
    11·1 answer
  • Para instalar una antena de televisor, se utilizó un poste de 10 metros de altura y se emplearon 30m de alambre que se sujetaron
    6·1 answer
  • Which describes the eye of a hurricane?
    8·2 answers
  • 1) [25 pts] A 90-kg merry-go-round of radius 2.0 m is spinning at a constant speed of 20 revolutions per minute. A kid standing
    10·1 answer
  • what happens to the current in a circuit if a 1.5 volt battery is removed and is placed by a 9 volt battery?
    13·1 answer
  • A copper atom has an atomic number of 29 and an atomic mass of 64. What
    8·1 answer
  • If a 1-megaton nuclear weapon is exploded
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!