It can be described as <span>a pure substance and an element. </span>
Answer:
The number density of the gas in container A is twice the number density of the gas in container B.
Explanation:
Here we have
P·V =n·R·T
n = P·V/(RT)
Therefore since V₁ = V₂ and T₁ = T₂
n₁ = P₁V₁/(RT₁)
n₂ = P₂V₂/(RT₂)
P₁ = 4 atm
P₂ = 2 atm
n₁ = 4V₁/(RT₁)
n₂ =2·V₁/(RT₁)
∴ n₁ = 2 × n₂
Therefore, the number of moles in container A is two times that in container B and the number density of the gas in container A is two times the number density in container B.
This can be shown based on the fact that the pressure of the container is due to the collision of the gas molecules on the walls of the container, with a kinetic energy that is dependent on temperature and mass, and since the temperature is constant, then the mass of container B is twice that of A and therefore, the number density of container A is twice that of B.
Answer:
answer is 11.76 meter
Explanation:
use 2nd equation of motion
S=ut+1/2at^2
Here is a helpful video https://www.khanacademy.org/_render
Answer:
v = 17.66 m/s
Explanation:
As we know that the lower end of the pole is fixed in the ground and it start rotating about that end
so here we can say that the gravitational potential energy of the pole will convert into rotational kinetic energy of the pole about its one end
so we have

so we have

now we have


now the speed of the other tip of the pole is given as

