Answer:
(a) 
(b) 
(c)
(d)
Solution:
As per the question:
Refractive index of medium 1, 
Angle of refraction for medium 1, 
Angle of refraction for medium 2, 
Now,
(a) The expression for the refractive index of medium 2 is given by using Snell's law:

where
= Refractive Index of medium 2
Now,

(b) The refractive index of medium 2 can be calculated by using the expression in part (a) as:


(c) To calculate the velocity of light in medium 1:
We know that:
Thus for medium 1
(d) To calculate the velocity of light in medium 2:
For medium 2:
If it;s a good insulator, there'll be no heat transfer warm to cold. So, over time, given the insulation ... nothing should happen ...
Answer:
The answer to your question is letter B.
Explanation:
To answer this question, we must remember the third law of motion of Newton that states that For every action, there is an equal and opposite reaction.
Then, if the action force is 40 N to the right, the reaction force must be 40 N to the left.
<span>You can use the equation
V_xf = V_xi + a_x(t)
V_xf = 20.0m/s
V_xi = 0m/s
ax = 2.0
t
Thus, solve for t and get 10seconds
and then take 5 seconds to break after 20 seconds of driving
so for
a) 10 + 20 + 5 = 35 seconds
</span><span>for part b)
You can use the formula
Delta x/Delta t = average velocity
Need to find xf, knowing xi = 0
Thus, use the formula
x_f = x_i + V_xi(t) + (1/2)a_x(t)^(2)
x_f = 0 + 0(10) + (1/2)(2.0)(10)^(2)
x_f = 100m
so for the first 10 seconds the truck traveled 100ms
At a speed of 20m/s
20m/s = xm/20s
20*20 = x
x = 400
thus we have 100+400 = 500m
then it slows down from 500m to x_f
thus I use the equation
x_f = x_i + (1/2)(V_xf + V_xi)t
x_f = 500 + (1/2)(0 + 20)(5)
x_f = 500 + 50
x_f = 550
therefore the total distance traveled is 550m
</span>
<span>to calculate average velocity
550/35 = 16m/s
thus
V_xavg = 16m/s</span>
The answer is 145 because 100 mph is equal to 25th so 145