1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andru [333]
3 years ago
8

A 500-Ω resistor, an uncharged 1.50-μF capacitor, and a 6.16-V emf are connected in series. (a) What is the initial current? (b)

What is the RC time constant? (c) What is the current after one time constant? (d) What is the voltage on the capacitor after one time constant?
Physics
2 answers:
professor190 [17]3 years ago
6 0

Given Information:

Voltage = 6.16 V

Resistance = 500 Ω

Capacitance = 1.5 µF  

Required Information:

Initial current = I = ?

Time constant = τ = ?

Current after 1 time constant = ?

Voltage after 1 time constant = ?

Answer:

I₀ = 0.0123 A

τ = 0.00075 sec

I = 0.00452 A

V = 3.89 V

Explanation:

(a) What is the initial current?

The initial current can be found using

I₀ = Voltage/Resistance

I₀ = 6.16/500

I₀ = 0.0123 A

(b) What is the RC time constant?

The time constant τ provides the information about how long it will take to charge the capacitor.

τ = R*C

τ = 500*1.5x10⁻⁶

τ = 0.00075 sec

(c) What is the current after one time constant?

I = I₀e^(-τ/RC)

I = 0.0123*e^(-1)   (0.00075/0.00075 = 1)

I = 0.00452 A

(d) What is the voltage on the capacitor after one time constant?

V = V₀(1 - e^(-τ/RC))

Where V₀ is the initial voltage 6.16 V

V = 6.16(1 - e^(-1))

V = 6.16*0.63212

V = 3.89 V

That means the capacitor will charge up to 3.89 V in one time constant.

Alexeev081 [22]3 years ago
4 0

Answer:

a) 0.01232 A

b) 0.00075 s = 0.75 ms

c) 0.0045323 A = 4.532 mA

d) 3.894 V

Explanation:

R = 500 Ω

V = 6.16 V

C = 1.50 μF

Let Vs be the voltage of the emf source

Let Vc be the voltage across the capacitor at any time

a) Current flows as a result of potential difference between two points. So, the current flows according to difference in voltage between the emf source and the capacitor.

At time t = 0,

There is no voltage on the capacitor; Vc = 0 V

Current in the circuit is given by

I = (Vs - Vc)/R

I = (6.16 - 0)/500

I = 0.01232 A

b) Time constant for an RC circuit is given by τ

τ = RC = (500) (1.5 × 10⁻⁶) = 0.00075 s

c) The current decay in an RC circuit (called decay because the current in the circuit starts to fall as the capacitor's voltage rises as the capacitor charges) is given by

I = I₀ e⁻ᵏᵗ

where k = (1/τ)

I₀ = Current in the circuit at t = 0 s; I₀ = 0.01232 A

At t = τ = 0.00075 s, kt = (τ/τ) = 1

I = 0.01232 e⁻¹ = 0.0045323 A = 4.532 mA

d) The voltage for a charging capacitor is given by

Vc = Vs (1 - e⁻ᵏᵗ)

where k = (1/τ)

At t = τ = 0.00075 s, Vc = ?, Vs = 6.16 V, kt = 1

Vc = 6.16 (1 - e⁻¹) = 6.16 (0.6321)

Vc = 3.894 V

You might be interested in
To drive a car at a constant velocity, you
kipiarov [429]

Answer:

the answer is C

Explanation:

The car, first is at rest and if you don't accelerate it won't move. When to hit the gas it will accelerate from rest

8 0
2 years ago
What type of image can be larger or smaller than the object?
Stolb23 [73]
It’s D. An enlargement (hope this helps!)
4 0
3 years ago
As a way of determining the inductance of a coil used in a research project, a student first connects the coil to a 5.62 V batte
Reptile [31]

Answer:

Its inductance L = 166 mH

Explanation:

Since a current, I = 0.698 A is obtained when a voltage , V = 5.62 V is applied, the resistance of the coil is gotten from V = IR

R = V/I = 5.62/0.698 = 8.052 Ω

Since we have a current of I' = 0.36 A (rms) when a voltage of V' = 35.1 V (rms) is applied, the impedance Z of the coil is gotten from

V₀' = I₀'Z where V₀ = maximum voltage = √2V' and I₀ = maximum current = √2I'

Z = V'/I' = √2 × 35.1 V/√2 × 0.36 V = 97.5 Ω

WE now find the reactance X of the coil from

Z² = X² + R²

X = √(Z² - R²)

= √(97.5² - 8.05²)

= √(9506.25 - 64.8025)

= √9441.4475

= 97.17 Ω

Now, the reactance X = 2πfL where f = frequency of generator = 93.1 Hz and L = inductance of coil.

L = X/2πf

= 97.17/2π(93.1 Hz)

= 97.17 Ω/584.965 rad/s

= 0.166 H

= 166 mH

Its inductance L = 166 mH

5 0
3 years ago
Sound is a ____ wave.
Ghella [55]
Sound waves are longitudal waves meaning they go back and forth
5 0
3 years ago
A force of 20.0 N is applied to a 3.00 kg object for 4.00 seconds. Calculate the impulse experienced by the object.​
GenaCL600 [577]

Answer:

Impulse = 80Ns

Explanation:

Given the following data;

Mass = 3kg

Force = 20N

Time = 4 seconds

To find the impulse experienced by the object;

Impulse = force * time

Impulse = 20*4

Impulse = 80Ns

Therefore, the impulse experienced by the object is 80 Newton-seconds.

7 0
2 years ago
Other questions:
  • Equation need answers not quite sure
    9·1 answer
  • Light is not a wave because it does not need a medium
    8·2 answers
  • How can we find the volume of a small pebble with the help of measuring cyilinder
    11·1 answer
  • An airplane is flying in a horizontal circle at a speed of 92.1 m/s. The 55.6 kg pilot does not want his radial acceleration to
    9·1 answer
  • A bag of groceries has a weight if 44 newtons , what is its weight in kilograms ?
    5·2 answers
  • .
    14·2 answers
  • What is the velocity of a Usain Bolt if he runs 200 m in 10 seconds?
    11·1 answer
  • If the planes of a crystal are 3.50 (1 A= 10^-10m = Ångstrom unit) apart, what wavelength of electromagnetic waves are needed so
    5·1 answer
  • Why would a person choosing to take a line of credit want to choose one that charges simple interest
    11·1 answer
  • Given that the wavelengths of visible light range from 400 nm to 700 nm, what is the highest frequency of visible light? (ccc =
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!