Answer:
160N force requred
Explanation:
160N force required to move the block with constant velocity.
Answer:
a) 
b) 
c) 
d) 
e) 
Explanation:
At that energies, the speed of proton is in the relativistic theory field, so we need to use the relativistic kinetic energy equation.
(1)
Here β = v/c, when v is the speed of the particle and c is the speed of light in vacuum.
Let's solve (1) for β.

We can write the mass of a proton in MeV/c².

Now we can calculate the speed in each stage.
a) Cockcroft-Walton (750 keV)



b) Linac (400 MeV)



c) Booster (8 GeV)



d) Main ring or injector (150 Gev)



e) Tevatron (1 TeV)



Have a nice day!
Answer:
61 N
Explanation:
Sum of forces in the x direction:
∑F = ma
F₂ cos (-55°) − 35 N = 0
F₂ cos (-55°) = 35 N
F₂ = 61 N
NOTE: The given question is incomplete.
<u>The complete question is given below.</u>
The human eye contains a molecule called 11-cis-retinal that changes conformation when struck with light of sufficient energy. The change in conformation triggers a series of events that results in an electrical signal being sent to the brain. The minimum energy required to change the conformation of 11-cis-retinal within the eye is about 164 kJ/mole. Calculate the longest wavelength visible to the human eye.
Solution:
Energy (E) = 164 kJ/mole
E = 164 kJ/mole = 164 kJ /6.023 x 10²³
= 2.72 x 10⁻²² kJ = 2.72 x 10⁻¹⁹J
Planck's constant = 6.6 x 10⁻³⁴ J s,
Speed of light = 3.00 x 10⁸ m/s
Let the required wavelength be λ.
Formula Used: E = hc / λ
or, λ = hc / E
or, λ = (6.6 x 10⁻³⁴ J s)× (3.00 x 10⁸ m/s) / (2.72 x 10⁻¹⁹J)
or, λ = 7.28 x 10⁻⁷ m
or, λ = (7.28 x 10⁻⁷ m) ×( 1.0 x 10⁹ nm / 1.0 m)
or, λ = (7.28 x 10² nm)
or, λ = 728 nm
Hence, the required wavelength will be 728 nm.
Answer:
9.81 × 10 = 98.1 meters
vertical displacement is s=1/2 at^2 + vt
initial vertical velocity is 0 so s=1/2 at^2
a in this instance is gravitational acceleration so 60m= 1/2 (9.81)t^2
solve for t, t = 3.497s. //I corrected this answer as just now I misread horizontal as vertical.