The mixing ratio is 6.
To find the answer, we have to know about the mixing ratio.
<h3>
What is mixing ratio?</h3>
- The mixing ratio must be calculated in a complex manner.
- A saturated vapor pressure (es) for values of air temperature and an actual vapor pressure (e) for values of dewpoint temperature must be determined in order to determine the mixing ratio.
- The air temperature and/or dewpoint temperature must first be converted to degrees Celsius (°C) before the vapor pressures can be calculated.
- The equation below can be used to determine the relative humidity (rh), as well as the actual mixing ratio and saturated mixing ratio,

where; w is the mixing ratio and w(s) is the saturation mixing ratio.
- In our question, it is given that,

- Thus, the mixing ratio will be,

Thus, we can conclude that, the mixing ratio is 6.
Learn more about mixing ratio here:
brainly.com/question/8791831
#SPJ4
Answer:
Explanation:
A and B are in series , Total resistance = Ra + Rb
This resistance is in parallel with single resistor C
Equivalent resistance Re = Rc x ( Ra + Rb ) / [Rc + ( Ra + Rb )]
Now this combination is in series in single resistance D .
Total resistance = Rd + Re
= Rd + { Rc x ( Ra + Rb ) / [Rc + ( Ra + Rb )] }
Since, the options are not given the question is incomplete the complete question is as follows.:
Which of the following is a major way in which oceans contribute to weather systems?
provide a diverse habitat for many organisms
experience changes in amounts of dissolved salts
store and transport the Sun's heat energy
reach depths that can be as much as 12000 meters
Answer: Store and transport the Sun's heat energy.
Explanation:
Oceanic currents are just like a conveyor belt. It helps in transportation of the warm water and the precipitation from the equator to the poles and the cold water in the poles towards the tropics. This way the oceans counteract the uneven distribution of the radiation of sun that reaches upto the surface earth. This will regulate the global climate.
Answer:
Speed of the this part is given as

Also the direction of the velocity of the third part of plate is moving along 135 degree with respect to one part of the moving plate
Explanation:
As we know by the momentum conservation of the system
we will have

here we know that

the momentum of two parts are equal in magnitude but perpendicular to each other
so we will have


now from above equation we have



Also the direction of the velocity of the third part of plate is moving along 135 degree with respect to one part of the moving plate
The kinetic energy is

and the height of the building doesn't matter at all.

joules