<span>We see only one side of the moon from earth because the moons period of rotation and revolution are equal. The moon rotates around the Earth at the exact speed as it rotates around its won axis (revolution). The result is: the same side of the moon is facing the Earth. If the moon doesn't rotate on it's axis we on the Earth would see all of the sides of the Moon.</span>
I'm like 89% sure that the answer is C.
Answer:
The mass of the block, M =T/(3a +g) Kg
Explanation:
Given,
The upward acceleration of the block a = 3a
The constant force acting on the block, F₀ = Ma = 3Ma
The mass of the block, M = ?
In an Atwood's machine, the upward force of the block is given by the relation
Ma = T - Mg
M x 3a = T - Ma
3Ma + Mg = T
M = T/(3a +g) Kg
Where 'T' is the tension of the string.
Hence, the mass of the block in Atwood's machine is, M = T/(3a +g) Kg